scholarly journals Phosphomannosylation and the Functional Analysis of the Extended Candida albicans MNN4-Like Gene Family

2017 ◽  
Vol 8 ◽  
Author(s):  
Roberto J. González-Hernández ◽  
Kai Jin ◽  
Marco J. Hernández-Chávez ◽  
Diana F. Díaz-Jiménez ◽  
Elías Trujillo-Esquivel ◽  
...  
2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Steven Bates ◽  
Rebecca A Hall ◽  
Jill Cheetham ◽  
Mihai G Netea ◽  
Donna M MacCallum ◽  
...  

2012 ◽  
Vol 444 (3) ◽  
pp. 497-502 ◽  
Author(s):  
Linghuo Jiang ◽  
Joerg Alber ◽  
Jihong Wang ◽  
Wei Du ◽  
Xuexue Yang ◽  
...  

Candida albicans RCH1 (regulator of Ca2+ homoeostasis 1) encodes a protein of ten TM (transmembrane) domains, homologous with human SLC10A7 (solute carrier family 10 member 7), and Rch1p localizes in the plasma membrane. Deletion of RCH1 confers hypersensitivity to high concentrations of extracellular Ca2+ and tolerance to azoles and Li+, which phenocopies the deletion of CaPMC1 (C. albicans PMC1) encoding the vacuolar Ca2+ pump. Additive to CaPMC1 mutation, lack of RCH1 alone shows an increase in Ca2+ sensitivity, Ca2+ uptake and cytosolic Ca2+ level. The Ca2+ hypersensitivity is abolished by cyclosporin A and magnesium. In addition, deletion of RCH1 elevates the expression of CaUTR2 (C. albicans UTR2), a downstream target of the Ca2+/calcineurin signalling. Mutational and functional analysis indicates that the Rch1p TM8 domain, but not the TM9 and TM10 domains, are required for its protein stability, cellular functions and subcellular localization. Therefore Rch1p is a novel regulator of cytosolic Ca2+ homoeostasis, which expands the functional spectrum of the vertebrate SLC10 family.


2017 ◽  
Author(s):  
Berta Vidal ◽  
Ulkar Aghayeva ◽  
Haosheng Sun ◽  
Chen Wang ◽  
Lori Glenwinkel ◽  
...  

ABSTRACTOne goal of modern day neuroscience is the establishment of molecular maps that assign unique features to individual neuron types. Such maps provide important starting points for neuron classification, for functional analysis and for developmental studies aimed at defining the molecular mechanisms of neuron identity acquisition and neuron identity diversification. In this resource paper, we describe a nervous system-wide map of the potential expression sites of 244 members of the largest gene family in the C. elegans genome, rhodopsin-like (class A) GPCR chemoreceptors, using classic gfp reporter gene technology. We cover representatives of all sequence families of chemoreceptors GPCRs, some of which were previously entirely uncharacterized. Most reporters are expressed in a very restricted number of cells, often just in single cells. We assign GPCR reporter expression to all but two of the 37 sensory neuron classes of the sex-shared, core nervous system. Some sensory neurons express a very small number of receptors, while others, particularly nociceptive neurons, co-express several dozen GPCR reporter genes. GPCR reporters are also expressed in a wide range of inter- and motorneurons, as well as nonneuronal cells, suggesting that GPCRs may constitute receptors not just for environmental signals, but also for internal cues. We observe only one notable, frequent association of coexpression patterns, namely in one nociceptive amphid (ASH) and two nociceptive phasmid sensory neurons (PHA, PHB). We identified GPCRs with sexually dimorphic expression and several GPCR reporters that are expressed in a left/right asymmetric manner. We identified a substantial degree of GPCR expression plasticity; particularly in the context of the environmentally-induced dauer diapause stage when one third of all tested GPCRs alter the cellular specificity of their expression within and outside the nervous system. Intriguingly, in a number of cases, the dauer-specific alterations of GPCR reporter expression in specific neuron classes are maintained during postdauer life and in some case new patterns are induced post-dauer, demonstrating that GPCR gene expression may serve as traits of life history. Taken together, our resource provides an entry point for functional studies and also offers a host of molecular markers for studying molecular patterning and plasticity of the nervous system.AUTHOR SUMMARYMaps of gene expression patterns in the nervous system provide an important resource for neuron classification, for functional analysis and for developmental studies that ask how different neurons acquire their unique identities. By analyzing transgenic gfp reporter strains, we describe here the expression pattern of 244 putative chemosensory receptor-encoding genes, which constitute the largest gene family in C.elegans. We show that, as expected, chemoreceptor expression is enriched in chemosensory neurons but it is also expressed in a wide range of interneurons, motorneurons, as well as non-neuronal cells, suggesting that putative chemosensory receptors may not just sense environmental signals but also internal cues. We find that each chemoreceptor is expressed in a few neuron types, often just one, but each neuron type can express a large number of chemoreceptors. Interestingly, we uncovered that chemoreceptor expression is remarkably plastic, particularly in the context of the environmentally-induced dauer diapause stage. Taken together, this molecular atlas of chemosensory receptors provides an entry point for functional studies and offers a host of markers for studying neuronal patterning and plasticity.


2003 ◽  
Vol 14 (8) ◽  
pp. 3449-3458 ◽  
Author(s):  
Agnès Baudin-Baillieu ◽  
Eric Fernandez-Bellot ◽  
Fabienne Reine ◽  
Eric Coissac ◽  
Christophe Cullin

The yeast inheritable [URE3] element corresponds to a prion form of the nitrogen catabolism regulator Ure2p. We have isolated several orthologous URE2 genes in different yeast species: Saccharomyces paradoxus, S. uvarum, Kluyveromyces lactis, Candida albicans, and Schizosaccharomyces pombe. We show here by in silico analysis that the GST-like functional domain and the prion domain of the Ure2 proteins have diverged separately, the functional domain being more conserved through the evolution. The more extreme situation is found in the two S. pombe genes, in which the prion domain is absent. The functional analysis demonstrates that all the homologous genes except for the two S. pombe genes are able to complement the URE2 gene deletion in a S. cerevisiae strain. We show that in the two most closely related yeast species to S. cerevisiae, i.e., S. paradoxus and S. uvarum, the prion domains of the proteins have retained the capability to induce [URE3] in a S. cerevisiae strain. However, only the S. uvarum full-length Ure2p is able to behave as a prion. We also show that the prion inactivation mechanisms can be cross-transmitted between the S. cerevisiae and S. uvarum prions.


2000 ◽  
Vol 97 (11) ◽  
pp. 6102-6107 ◽  
Author(s):  
P. Staib ◽  
M. Kretschmar ◽  
T. Nichterlein ◽  
H. Hof ◽  
J. Morschhauser

Sign in / Sign up

Export Citation Format

Share Document