scholarly journals Extractable Bacterial Surface Proteins in Probiotic–Host Interaction

2018 ◽  
Vol 9 ◽  
Author(s):  
Fillipe L. R. do Carmo ◽  
Houem Rabah ◽  
Rodrigo D. De Oliveira Carvalho ◽  
Floriane Gaucher ◽  
Barbara F. Cordeiro ◽  
...  
2020 ◽  
Author(s):  
Nahid Javanshir ◽  
Ehsaneh Moslem Rezvani ◽  
Zakie Mazhary ◽  
Sepideh Razani ◽  
Gholamreza Ahmadian ◽  
...  

Abstract Background: Lactic acid bacteria (LAB), which are important probiotics, play a fundamental role in ensuring the health of the gastrointestinal tract, maintaining the microbiome balance, and preventing the gastrointestinal (GI) tract disorder. One of the effective mechanisms in the bacterial-host interaction is related to the action of the enzyme sortase A and Sortase Dependent Proteins (SDPs). Sortase plays an important role in the stabilization and retention of the probiotic in the gut by exposing various SDPs on the bacterial surface proteins which is involved in the attachment of bacteria to the host intestine and retention in the gut.Methods: The present study aimes to identify and investigate the abundance of sortase A-dependent proteins (SDPs) in lactic acide bacteria, as well as the frequency analysis of X residue in the sortase recognition and cleavage LPXTG motif and its effect on the interaction between sortase and SDPs. For this purpose, genomic and proteomic sequences of 165 LABs including 119 Lactobacilli, 29 Enterococci, 8 Lactococci, 5 Carnobacteria, and 4 Leuconostocs, were extracted from UniProt and Genome NCBI databases,. for this, we designed ProtScreen software with the ability to recognize a specific motif and domain in the proteome, which is available at http://nigebprotscreen.com/. Also interactions between sortase A and LPXTG motif with 18 different amino acids in X position were determined using in silico approach. The structure of the sortase A enzyme and a SDP in Lactobacillus acidophilus was used for docking using HADDOCK and CABS-dock toolsResults: In this study, out of 165 LABs reference proteomes, there were 25 SDP-free strains. Among the 140 strains with SDPs, 707 proteins were found with the potential to function as SDPs. In this way, ProtScreen software with the ability to recognize a specific motif and domain in the proteome, which is available at http://nigebprotscreen.com/ was designed. Also a database including 707 SDPs in Lactobacillus, Enterococcus, Lactococcus, Carnobacterium, and Leuconostoc strains was designed which is available in the project section at online ProtScreen software. Our results showed that the most abundant amino acid in X position in the LPXTG motif among 165(LABs) is glutamine (Q). Results of SDPs and sortase A docking using HADDOCK and CABS-dock tools, showed that the highest binding energy is related to the glutamine, where a positive relationship between frequency of amino acids and binding energy was observed. Therefore, our data shows that why glutamine in nature and during evolution, has been selected as the best amino acid for X site in LPXTG motif.Conclusions: The results of the present research and similar studies could be useful in better understanding the role of sortase A and SDPs in the studies on the mechanisms related to the interactions between bacteria and the host, including longer probiotic persistence in the gut.


2020 ◽  
Author(s):  
Nahid Javanshir ◽  
Ehsaneh Moslem Rezvani ◽  
Zakie Mazhary ◽  
Sepideh Razani ◽  
Gholamreza Ahmadian ◽  
...  

Abstract BackgroundLactic acid bacteria (LAB), which are important probiotics, play a fundamental role in ensuring the health of the gastrointestinal tract, maintaining the microbiome balance, and preventing the gastrointestinal (GI) tract disorder. One of the effective mechanisms in the bacterial-host interaction is related to the action of the enzyme sortase A and Sortase Dependent Proteins (SDPs). Sortase plays an important role in the stabilization and retention of the probiotic in the gut by exposing various SDPs on the bacterial surface proteins which is involved in the attachment of bacteria to the host intestine and retention in the gut.ResultsIn this study, out of 165 LABs reference proteomes, there were 25 SDP-free strains. Among the 140 strains with SDPs, 707 proteins were found with the potential to function as SDPs. In this way, ProtScreen software with the ability to recognize a specific motif and domain in the proteome, which is available at http://nigebprotscreen.com/ was designed. Also a database including 707 SDPs in Lactobacillus, Enterococcus, Lactococcus, Carnobacterium, and Leuconostoc strains was designed which is available in the project section at online ProtScreen software. Our results showed that the most abundant amino acid in X position in the LPXTG motif among 165(LABs) is glutamine (Q). Results of SDPs and sortase A docking using HADDOCK and CABS-dock tools, showed that the highest binding energy is related to the glutamine, where a positive relationship between frequency of amino acids and binding energy was observed. Therefore, our data shows that why glutamine in nature and during evolution, has been selected as the best amino acid for X site in LPXTG motif.ConclusionsThe results of the present research and similar studies could be useful in better understanding the role of sortase A and SDPs in the studies on the mechanisms related to the interactions between bacteria and the host, including longer probiotic persistence in the gut.


2020 ◽  
Vol 77 (12) ◽  
pp. 3831-3841
Author(s):  
Lidia Muscariello ◽  
Barbara De Siena ◽  
Rosangela Marasco

AbstractThe gut microbiota is a complex microbial ecosystem where bacteria, through mutual interactions, cooperate in maintaining of wellbeing and health. Lactobacilli are among the most important constituents of human and animal intestinal microbiota and include many probiotic strains. Their presence ensures protection from invasion of pathogens, as well as stimulation of the immune system and protection of the intestinal flora, often exerted through the ability to interact with mucus and extracellular matrix components. The main factors responsible for mediating adhesion of pathogens and commensals to the gut are cell surface proteins that recognize host targets, as mucus layer and extracellular matrix proteins. In the last years, several adhesins have been reported to be involved in lactobacilli–host interaction often miming the same mechanism used by pathogens.


2007 ◽  
Vol 98 (09) ◽  
pp. 488-496 ◽  
Author(s):  
Patric Nitsche-Schmitz ◽  
Manfred Rohde ◽  
Gursharan Chhatwal

SummaryGram-positive cocci are important human pathogens. Streptococci and staphylococci in particular are a major threat to human health,since they cause a variety of serious invasive infections. Their invasion into normally sterile sites of the host depends on elaborated bacterial mechanisms that involve adhesion to the host tissue, its degradation, internalisation by host cells, and passage through epithelia and endothelia. Interactions of bacterial surface proteins with proteins of the host’s extracellular matrix as well as with cell surface receptors are crucial factors in these processes, and some of the key mechanisms are similar in many pathogenic Gram-positive cocci.Therapies that interfere with these mechanisms may become efficient alternatives to today’s antibiotic treatments.


Pathogens ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 52 ◽  
Author(s):  
Nicole Lamond ◽  
Nancy Freitag

Protection of the developing fetus from pathogens is one of the many critical roles of the placenta. Listeria monocytogenes is one of a select number of pathogens that can cross the placental barrier and cause significant harm to the fetus, leading to spontaneous abortion, stillbirth, preterm labor, and disseminated neonate infection despite antibiotic treatment. Such severe outcomes serve to highlight the importance of understanding how L. monocytogenes mediates infiltration of the placental barrier. Here, we review what is currently known regarding vertical transmission of L. monocytogenes as a result of cell culture and animal models of infection. In vitro cell culture and organ models have been useful for the identification of L. monocytogenes virulence factors that contribute to placental invasion. Examples include members of the Internalin family of bacterial surface proteins such as Interalin (Inl)A, InlB, and InlP that promote invasion of cells at the maternal-fetal interface. A number of animal models have been used to interrogate L. monocytogenes vertical transmission, including mice, guinea pigs, gerbils, and non-human primates; each of these models has advantages while still not providing a comprehensive understanding of L. monocytogenes invasion of the human placenta and/or fetus. These models do, however, allow for the molecular investigation of the balance between fetal tolerance and immune protection from L. monocytogenes during pregnancy.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Vitor H. Pomin

As broadly reported, there is an ongoing Zika virus (ZIKV) outbreak in countries of Latin America. Recent findings have demonstrated that ZIKV causes severe defects on the neural development in fetuses in utero and newborns. Very little is known about the molecular mechanisms involved in the ZIKV infectivity. Potential therapeutic agents are also under investigation. In this report, the possible mechanisms of action played by glycosaminoglycans (GAGs) displayed at the surface proteoglycans of host cells, and likely in charge of interactions with surface proteins of the ZIKV, are highlighted. As is common for the most viruses, these sulfated glycans serve as receptors for virus attachment onto the host cells and consequential entry during infection. The applications of (1) exogenous sulfated glycans of different origins and chemical structures capable of competing with the virus attachment receptors (supposedly GAGs) and (2) GAG-degrading enzymes able to digest the virus attachment receptors on the cells may be therapeutically beneficial as anti-ZIKV. This communication attempts, therefore, to offer some guidance for the future research programs aimed to unveil the molecular mechanisms underlying the ZIKV infectivity and to develop therapeutics capable of decreasing the devastating consequences caused by ZIKV outbreak in the Americas.


2000 ◽  
Vol 46 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Barry Ziola ◽  
Lori Gee ◽  
Nancy N Berg ◽  
Sun Y Lee

Megasphaera cerevisiae is a Gram-negative obligate anaerobe that causes turbidity and off-flavour and aroma in beer. Seven isolates of M. cerevisiae were obtained worldwide, and their extractable surface antigens were focused upon to determine if there is more than one serogroup of this bacterium. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of ethylenediaminetetraacetic acid (EDTA) bacterial extracts revealed a predominant protein with apparent molecular weights of 46 000, 45 000, and 43 000 for three, two, and two isolates, respectively. When mouse antiserum generated against any of the EDTA extracts was reacted with denatured bacterial proteins in immunoblots, all bacterial isolates exhibited extensive cross-reactivity involving three antigens, one being the major EDTA-extractable protein. In contrast, when the sera were tested for surface reactivity with intact bacteria, three cross-reactivity groups were observed, with the groups individually comprised of bacteria having the same size major EDTA-extractable surface protein. When BALB/c mice immunized with a bacterium from each of the three serogroups were used for monoclonal antibody (Mab) hybridoma production, bacterial surface-reactive Mabs were obtained whose reactivities parallel the three polyclonal antibody-defined serogroups. Through combining these surface-reactive Mabs, it will be possible to rapidly detect and identify beer contamination by M. cerevisiae belonging to any serogroup. Key words: beer spoilage bacteria, Megasphaera cerevisiae, monoclonal antibodies, surface proteins, serogroups.


2002 ◽  
Vol 184 (22) ◽  
pp. 6376-6383 ◽  
Author(s):  
Thomas Areschoug ◽  
Sara Linse ◽  
Margaretha Stålhammar-Carlemalm ◽  
Lars-Olof Hedén ◽  
Gunnar Lindahl

ABSTRACT Proline-rich regions have been identified in many surface proteins of pathogenic streptococci and staphylococci. These regions have been suggested to be located in cell wall-spanning domains and/or to be required for surface expression of the protein. Because little is known about these regions, which are found in extensively studied and biologically important surface proteins, we characterized the proline-rich region in one such protein, the β protein of group B streptococci. The proline-rich region in β, designated the XPZ region, has a proline at every third position, and the sequence is highly periodic in other respects. Immunochemical analysis showed that the XPZ region was not associated with the cell wall but was exposed on the bacterial surface. Moreover, characterization of a β mutant lacking the XPZ region demonstrated that this region was not required for surface expression of the β protein. Comparison of the XPZ region in different β proteins showed that it varied in size but always retained the typical sequence periodicity. Circular dichroism spectroscopy indicated that the XPZ region had the structure of a polyproline II helix, an extended and solvent-exposed structure with exactly three residues per turn. Because of the three-residue sequence periodicity in the XPZ region, it is expected to be amphipathic and to have distinct nonpolar and polar surfaces. This study identified a proline-rich structure with unique properties that is exposed on the surface of an important human pathogen.


Sign in / Sign up

Export Citation Format

Share Document