scholarly journals Lactic Acid Bacteria in Wine: Technological Advances and Evaluation of Their Functional Role

2021 ◽  
Vol 11 ◽  
Author(s):  
Carla Virdis ◽  
Krista Sumby ◽  
Eveline Bartowsky ◽  
Vladimir Jiranek

Currently, the main role of Lactic Acid Bacteria (LAB) in wine is to conduct the malolactic fermentation (MLF). This process can increase wine aroma and mouthfeel, improve microbial stability and reduce the acidity of wine. A growing number of studies support the appreciation that LAB can also significantly, positively and negatively, contribute to the sensorial profile of wine through many different enzymatic pathways. This is achieved either through the synthesis of compounds such as diacetyl and esters or by liberating bound aroma compounds such as glycoside-bound primary aromas and volatile thiols which are odorless in their bound form. LAB can also liberate hydroxycinnamic acids from their tartaric esters and have the potential to break down anthocyanin glucosides, thus impacting wine color. LAB can also produce enzymes with the potential to help in the winemaking process and contribute to stabilizing the final product. For example, LAB exhibit peptidolytic and proteolytic activity that could break down the proteins causing wine haze, potentially reducing the need for bentonite addition. Other potential contributions include pectinolytic activity, which could aid juice clarification and the ability to break down acetaldehyde, even when bound to SO2, reducing the need for SO2 additions during winemaking. Considering all these findings, this review summarizes the novel enzymatic activities of LAB that positively or negatively affect the quality of wine. Inoculation strategies, LAB improvement strategies, their potential to be used as targeted additions, and technological advances involving their use in wine are highlighted along with suggestions for future research.

Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1231 ◽  
Author(s):  
Ana Mendes Ferreira ◽  
Arlete Mendes-Faia

The main role of acidity and pH is to confer microbial stability to wines. No less relevant, they also preserve the color and sensory properties of wines. Tartaric and malic acids are generally the most prominent acids in wines, while others such as succinic, citric, lactic, and pyruvic can exist in minor concentrations. Multiple reactions occur during winemaking and processing, resulting in changes in the concentration of these acids in wines. Two major groups of microorganisms are involved in such modifications: the wine yeasts, particularly strains of Saccharomyces cerevisiae, which carry out alcoholic fermentation; and lactic acid bacteria, which commonly conduct malolactic fermentation. This review examines various such modifications that occur in the pre-existing acids of grape berries and in others that result from this microbial activity as a means to elucidate the link between microbial diversity and wine composition.


2019 ◽  
pp. 96-100
Author(s):  
V. V. Kondratenko ◽  
N. E. Posokina ◽  
J. A. Semenova

Relevance. Cabbage is one of the most popular products, which is mainly fermented with the addition of various vegetables. When fermentation is not only the original nutrients such as vitamin C, amino acids, dietary fibers, etc., but also develop functional microorganisms such as lactic acid bacteria. Fermentation has an important effect on the quality and taste of cabbage, so it is important to study the fermentation process, microbial diversity and changes in nutrients and chemical elements in the fermentation process. L. mesenteroides is considered to be the dominant species on heterofermentative early stages of fermentation. However, there is little information on the diversity of species and strains of Leuconostoc involved in fermentation of sauerkraut. Studies that used traditional biochemical methods to study fermentation of sauerkraut showed that four main types of lactic acid bacteria were involved in the fermentation process: Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus and Lactobacillus brevis. Taking into account the importance of two-stage fermentation of vegetable raw materials in order to create optimal conditions for the development of the "main" pool of lactic acid microorganisms at the first stage, it becomes urgent to conduct a complex of studies aimed at reproducing the "natural" process in which the main role is played by bacteria of the genus Leuconostoc mesenteroides at the second stage – monocultures of lactic acid microorganisms and their consortia.Methods. The paper studies the dynamics of the type of interaction of lactic acid microorganisms in paired consortiums on model media pretreated by the culture of the species Leuconostoc mesenteroides, at the main stage of step fermentation of white cabbage of the "Parus" variety.Results. It is established that the sum of the criteria, the consortium "L. mesenteroides \ L. casei + L. plantarum" demonstrates the most pronounced advantage compared with monoculture cultivation of appropriate format of pseudotensorial; despite the pronounced synergy in the cultivation of the consortium "L. mesenteroides \ L. brevis + L. plantarum", the dynamics of the comparison index on the rate of increase in the concentration of microorganisms indicates the need for additional research. 


2018 ◽  
Vol 69 (1) ◽  
pp. 32-45 ◽  
Author(s):  
Adam Perczak ◽  
Piotr Goliński ◽  
Marcin Bryła ◽  
Agnieszka Waśkiewicz

Abstract Mycotoxins are produced by some fungal species of the genera Aspergillus, Penicillium, and Fusarium and are common contaminants of a wide range of food commodities. Numerous strategies are used to minimise fungal growth and mycotoxin contamination throughout the food chain. This review addresses the use of lactic acid bacteria, which can inhibit fungal growth and participate in mycotoxin degradation and/or removal from contaminated food. Being beneficial for human and animal health, lactic acid bacteria have established themselves as an excellent solution to the problem of mycotoxin contamination, yet in practice their application in removing mycotoxins remains a challenge to be addressed by future research.


Author(s):  
Ayşe Gürsoy ◽  
Nazlı Türkmen

Cheese ripening involves highly complex biochemical events. Coagulant enzymes as well as the utilized starters play an important role in these events. Two types of starters are used: primary and secondary. The main role of the primary culture, which consists of lactic acid bacteria, is to carry out lactic production during fermentation. They contribute to proteolysis and limited flavor formation with the enzymes they possess. Secondary or adjunct cultures are used to develop the texture and to accelerate the ripening. During the selection of this type of culture, enzyme profiles (i.e., proteolytic and lipolytic activities and their autolyse levels) in cheese are the primary factors to be taken into consideration. Apart from these, the other factors are their positive effects on health, availability, and economy. Adjunct cultures include yeast, molds, and bacteria. Some of the heterofermentative lactobacilli species, in particular weakened strains, are used as adjunct cultures in order to accelerate the ripening and shorten the ripening time in fat-reduced and low-fat cheeses. This chapter explores adjunct cultures in cheese technology.


2009 ◽  
Vol 72 (1) ◽  
pp. 101-110 ◽  
Author(s):  
STAVROS G. MANIOS ◽  
ARGYRIS G. SKIADARESIS ◽  
KOSTAS KARAVASILIS ◽  
ELEFTHERIOS H. DROSINOS ◽  
PANAGIOTIS N. SKANDAMIS

A microbial model was developed for spoilage of two acidic Greek appetizers, namely, tyrosalata (TS) and tyrokafteri (TK), with pH values of 4.34 to 4.50 and 4.22 to 4.38, respectively. The specific spoilage organisms of these products were lactic acid bacteria (LAB), which dominated during storage, while yeasts, whenever present, remained at low levels (1 to 2 log CFU/g). Correlations of LAB populations with changes in pH and sensory characteristics indicated that the spoilage level of LAB ranged from 8.1 to 8.6 log CFU/g for both products. TK showed a relatively higher microbial stability than did TS. The growth of LAB was modeled with the Baranyi model, while their maximum specific growth rates were further modeled as a function of temperature with square-root model and Arrhenius equations for each appetizer. The validation of the model was performed under nonisothermal conditions in the laboratory and in a field validation trial with temperature logging during distribution of individual packages in the chill supply chain, including transportation from the plant to the distribution center, retail display, and household refrigerators. Models for both appetizers showed satisfactory agreement with data, with a slight tendency of overprediction of LAB in TS. The field validation process also confirmed the higher stability of TK over TS. The developed models may serve as a useful tool for monitoring the microbiological quality of such complex products and manage their distribution. Furthermore, depending on the seasonal variation of chill chain conditions, reassessment of shelf life may be performed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chaoran Liu ◽  
Jiaqi Zheng ◽  
Xuan Ou ◽  
Yuzhu Han

Lactic acid bacteria (LAB) are a kind of Gram-positive bacteria which can colonize in the biological gastrointestinal tract and play a variety of probiotic roles. LAB have a wide range of applications in industry, animal husbandry, planting, food safety, and medical science fields. Previous studies on LAB have typically concentrated on their effects on improving the digestion and absorption of the gastrointestinal tract, regulating the balance of the microflora, and inhibiting the production and accumulation of toxic substances. The resistance of LAB to cancer is a topic of growing interest and relevance. This paper provided a summary of bio-active substances of LAB when they act against cancer, as well as the safety of LAB in clinical cancer treatment. Moreover, this paper further discussed several possible directions for future research and the potential application of LAB as anti-cancer therapy.


2017 ◽  
Vol 243 ◽  
pp. 16-27 ◽  
Author(s):  
Maria Stella Cappello ◽  
Giacomo Zapparoli ◽  
Antonio Logrieco ◽  
Eveline J Bartowsky

2021 ◽  
Vol 854 (1) ◽  
pp. 012028
Author(s):  
M Dučić ◽  
C Barcenilla ◽  
A Alvarez-Ordoñez ◽  
M Prieto

Abstract Fast acidification is one of the main factors of microbial stability of dry fermented sausages. Development of functional starter cultures for improving safety of sausages without altering their quality is under way. This study compared aspects of physicochemical, technological, hygienic and instrumental quality of sausages produced with or without functional starter culture. Finished sausages with starter had lower water activity and lower levels of enterobacteria and lactic acid bacteria, compared to artisanal ones. During most of the ripening, pH was lower in sausages with starter, but in the final products, the same pH was observed in both groups of sausages. In sausages with starter lower redness was determined than in artisanal sausages, while other parameters, colour and chewiness, did not differ significantly. Use of starter culture improved physicochemical, technological and hygienic characteristics of the final products.


2014 ◽  
pp. 271-283 ◽  
Author(s):  
Slavica Veskovic-Moracanin ◽  
Dragutin Djukic ◽  
Nurgin Memisi

Lactic acid bacteria (LAB) have an essential role in the production of fermented products. With their metabolic activity, they influence the ripening processes - leading to desired sensory qualities while at the same time inhibiting the growth of undesired microorganisms. Because of their dominant role during fermentation and because of a long tradition of utilization, Lhave been designated as ?safe microbiota?. Biological protection of LAB, as a naturally present and/or selected and intentionally added microflora, is realized through the production of non-specific (lactic acid, acetic acid and other volatile organic acids, hydrogen peroxide, diacetyl, etc) and specific metabolites, bacteriocins. Bacteriocins are extracellularly released proteins or peptides which possess certain antibacterial activity towards certain types of microorganisms, usually related to the producing bacteria. Today, bacteriocins represent a very interesting potential for their application in the food industry. Their application can reduce the use of synthetic preservatives and/or the intensity of thermal treatment during food production consumer?s need for safe, fresh and minimally-processed food. With the intention of realizing this potential to the fullest, it is necessary to understand the nature of bacteriocins, their production mechanisms, regulations and actions, as well as the influence of external factors on the their antimicrobial activity. The composition of food, i.e. its characteristics (pH, temperature, ingredients and additives, types and quantities of epiphytic microbiota) and the actual technological process used in production, can all influence the stability and activity of the added bacteriocins. The future research in this field should also aim to clarify this unknown aspect of the application of bacteriocins, to provide the necessary knowledge about the optimization of the external conditions and open up the possibility of discovering their new producers.


Sign in / Sign up

Export Citation Format

Share Document