scholarly journals Machine Learning Predicts the Presence of 2,4,6-Trinitrotoluene in Sediments of a Baltic Sea Munitions Dumpsite Using Microbial Community Compositions

2021 ◽  
Vol 12 ◽  
Author(s):  
René Janßen ◽  
Aaron J. Beck ◽  
Johannes Werner ◽  
Olaf Dellwig ◽  
Johannes Alneberg ◽  
...  

Bacteria are ubiquitous and live in complex microbial communities. Due to differences in physiological properties and niche preferences among community members, microbial communities respond in specific ways to environmental drivers, potentially resulting in distinct microbial fingerprints for a given environmental state. As proof of the principle, our goal was to assess the opportunities and limitations of machine learning to detect microbial fingerprints indicating the presence of the munition compound 2,4,6-trinitrotoluene (TNT) in southwestern Baltic Sea sediments. Over 40 environmental variables including grain size distribution, elemental composition, and concentration of munition compounds (mostly at pmol⋅g–1 levels) from 150 sediments collected at the near-to-shore munition dumpsite Kolberger Heide by the German city of Kiel were combined with 16S rRNA gene amplicon sequencing libraries. Prediction was achieved using Random Forests (RFs); the robustness of predictions was validated using Artificial Neural Networks (ANN). To facilitate machine learning with microbiome data we developed the R package phyloseq2ML. Using the most classification-relevant 25 bacterial genera exclusively, potentially representing a TNT-indicative fingerprint, TNT was predicted correctly with up to 81.5% balanced accuracy. False positive classifications indicated that this approach also has the potential to identify samples where the original TNT contamination was no longer detectable. The fact that TNT presence was not among the main drivers of the microbial community composition demonstrates the sensitivity of the approach. Moreover, environmental variables resulted in poorer prediction rates than using microbial fingerprints. Our results suggest that microbial communities can predict even minor influencing factors in complex environments, demonstrating the potential of this approach for the discovery of contamination events over an integrated period of time. Proven for a distinct environment future studies should assess the ability of this approach for environmental monitoring in general.

2021 ◽  
Vol 232 (1) ◽  
Author(s):  
Yazeed Abdelmageed ◽  
Carrie Miller ◽  
Carrie Sanders ◽  
Timothy Egbo ◽  
Alexander Johs ◽  
...  

AbstractIn nature, the bioaccumulative potent neurotoxin methylmercury (MeHg) is produced from inorganic mercury (Hg) predominantly by anaerobic microorganisms. Hg-contaminated soils are a potential source of MeHg due to microbial activity. We examine streambank soils collected from the contaminated East Fork Poplar Creek (EFPC) in Tennessee, USA, where seasonal variations in MeHg levels have been observed throughout the year, suggesting active microbial Hg methylation. In this study, we characterized the microbial community in contaminated bank soil samples collected from two locations over a period of one year and compared the results to soil samples from an uncontaminated reference site with similar geochemistry (n = 12). Microbial community composition and diversity were assessed by 16S rRNA gene amplicon sequencing. Furthermore, to isolate potential methylators from soils, enrichment cultures were prepared using selective media. A set of three clade-specific primers targeting the gene hgcA were used to detect Hg methylators among the δ-Proteobacteria in EFPC bank soils across all seasons. Two families among the δ-Proteobacteria that have been previously associated with Hg methylation, Geobacteraceae and Syntrophobacteraceae, were found to be predominant with relative abundances of 0.13% and 4.0%, respectively. However, in soil enrichment cultures, Firmicutes were predominant among families associated with Hg methylation. Specifically, Clostridiaceae and Peptococcaceae and their genera Clostridium and Desulfosporosinus were among the ten most abundant genera with relative abundances of 2.6% and 1.7%, respectively. These results offer insights into the role of microbial communities on Hg transformation processes in contaminated bank soils in EFPC. Identifying the biogeochemical drivers of MeHg production is critical for future remediation efforts.


2017 ◽  
Author(s):  
Manuel Kleiner ◽  
Erin Thorson ◽  
Christine E. Sharp ◽  
Xiaoli Dong ◽  
Dan Liu ◽  
...  

AbstractAssessment of microbial community composition is the cornerstone of microbial ecology. Microbial community composition can be analyzed by quantifying cell numbers or by quantifying biomass for individual populations. However, as cell volumes can differ by orders of magnitude, these two approaches yield vastly different results. Methods for quantifying cell numbers are already available (e.g. fluorescence in situ hybridization, 16S rRNA gene amplicon sequencing), yet methods for assessing community composition in terms of biomass are lacking.We developed metaproteomics based methods for assessing microbial community composition using protein abundance as a measure for biomass contributions of individual populations. We optimized the accuracy and sensitivity of the method using artificially assembled microbial communities and found that it is less prone to some of the biases found in sequencing-based methods. We applied the method using communities from two different environments, microbial mats from two alkaline soda lakes and saliva from multiple individuals.


Author(s):  
Tamara J. H. M. van Bergen ◽  
Ana B. Rios-Miguel ◽  
Tom M. Nolte ◽  
Ad M. J. Ragas ◽  
Rosalie van Zelm ◽  
...  

Abstract Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC–MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. Key points • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change. Graphical abstract


2019 ◽  
Vol 85 (7) ◽  
Author(s):  
Alexander Burkert ◽  
Thomas A. Douglas ◽  
Mark P. Waldrop ◽  
Rachel Mackelprang

ABSTRACTPermafrost hosts a community of microorganisms that survive and reproduce for millennia despite extreme environmental conditions, such as water stress, subzero temperatures, high salinity, and low nutrient availability. Many studies focused on permafrost microbial community composition use DNA-based methods, such as metagenomics and 16S rRNA gene sequencing. However, these methods do not distinguish among active, dead, and dormant cells. This is of particular concern in ancient permafrost, where constant subzero temperatures preserve DNA from dead organisms and dormancy may be a common survival strategy. To circumvent this, we applied (i) LIVE/DEAD differential staining coupled with microscopy, (ii) endospore enrichment, and (iii) selective depletion of DNA from dead cells to permafrost microbial communities across a Pleistocene permafrost chronosequence (19,000, 27,000, and 33,000 years old). Cell counts and analysis of 16S rRNA gene amplicons from live, dead, and dormant cells revealed how communities differ between these pools, how they are influenced by soil physicochemical properties, and whether they change over geologic time. We found evidence that cells capable of forming endospores are not necessarily dormant and that members of the classBacilliwere more likely to form endospores in response to long-term stressors associated with permafrost environmental conditions than members of theClostridia, which were more likely to persist as vegetative cells in our older samples. We also found that removing exogenous “relic” DNA preserved within permafrost did not significantly alter microbial community composition. These results link the live, dead, and dormant microbial communities to physicochemical characteristics and provide insights into the survival of microbial communities in ancient permafrost.IMPORTANCEPermafrost soils store more than half of Earth’s soil carbon despite covering ∼15% of the land area (C. Tarnocai et al., Global Biogeochem Cycles 23:GB2023, 2009, https://doi.org/10.1029/2008GB003327). This permafrost carbon is rapidly degraded following a thaw (E. A. G. Schuur et al., Nature 520:171–179, 2015, https://doi.org/10.1038/nature14338). Understanding microbial communities in permafrost will contribute to the knowledge base necessary to understand the rates and forms of permafrost C and N cycling postthaw. Permafrost is also an analog for frozen extraterrestrial environments, and evidence of viable organisms in ancient permafrost is of interest to those searching for potential life on distant worlds. If we can identify strategies microbial communities utilize to survive in permafrost, it may yield insights into how life (if it exists) survives in frozen environments outside of Earth. Our work is significant because it contributes to an understanding of how microbial life adapts and survives in the extreme environmental conditions in permafrost terrains.


2020 ◽  
Vol 8 (2) ◽  
pp. 286
Author(s):  
Nina Lackner ◽  
Andreas O. Wagner ◽  
Rudolf Markt ◽  
Paul Illmer

pH is a central environmental factor influencing CH4 production from organic substrates, as every member of the complex microbial community has specific pH requirements. Here, we show how varying pH conditions (5.0–8.5, phosphate buffered) and the application of a phosphate buffer per se induce shifts in the microbial community composition and the carbon flow during nine weeks of thermophilic batch digestion. Beside monitoring the methane production as well as volatile fatty acid concentrations, amplicon sequencing of the 16S rRNA gene was conducted. The presence of 100 mM phosphate resulted in reduced CH4 production during the initial phase of the incubation, which was characterized by a shift in the dominant methanogenic genera from a mixed Methanosarcina and Methanoculleus to a pure Methanoculleus system. In buffered samples, acetate strongly accumulated in the beginning of the batch digestion and subsequently served as a substrate for methanogens. Methanogenesis was permanently inhibited at pH values ≤5.5, with the maximum CH4 production occurring at pH 7.5. Adaptations of the microbial community to the pH variations included shifts in the archaeal and bacterial composition, as less competitive organisms with a broad pH range were able to occupy metabolic niches at unfavorable pH conditions.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Nastassia V. Patin ◽  
Michelle Schorn ◽  
Kristen Aguinaldo ◽  
Tommie Lincecum ◽  
Bradley S. Moore ◽  
...  

ABSTRACT Marine sediments harbor complex microbial communities that remain poorly studied relative to other biomes such as seawater. Moreover, bacteria in these communities produce antibiotics and other bioactive secondary metabolites, yet little is known about how these compounds affect microbial community structure. In this study, we used next-generation amplicon sequencing to assess native microbial community composition in shallow tropical marine sediments. The results revealed complex communities comprised of largely uncultured taxa, with considerable spatial heterogeneity and known antibiotic producers comprising only a small fraction of the total diversity. Organic extracts from cultured strains of the sediment-dwelling actinomycete genus Salinispora were then used in mesocosm studies to address how secondary metabolites shape sediment community composition. We identified predatory bacteria and other taxa that were consistently reduced in the extract-treated mesocosms, suggesting that they may be the targets of allelopathic interactions. We tested related taxa for extract sensitivity and found general agreement with the culture-independent results. Conversely, several taxa were enriched in the extract-treated mesocosms, suggesting that some bacteria benefited from the interactions. The results provide evidence that bacterial secondary metabolites can have complex and significant effects on sediment microbial communities. IMPORTANCE Ocean sediments represent one of Earth's largest and most poorly studied biomes. These habitats are characterized by complex microbial communities where competition for space and nutrients can be intense. This study addressed the hypothesis that secondary metabolites produced by the sediment-inhabiting actinomycete Salinispora arenicola affect community composition and thus mediate interactions among competing microbes. Next-generation amplicon sequencing of mesocosm experiments revealed complex communities that shifted following exposure to S. arenicola extracts. The results reveal that certain predatory bacteria were consistently less abundant following exposure to extracts, suggesting that microbial metabolites mediate competitive interactions. Other taxa increased in relative abundance, suggesting a benefit from the extracts themselves or the resulting changes in the community. This study takes a first step toward assessing the impacts of bacterial metabolites on sediment microbial communities. The results provide insight into how low-abundance organisms may help structure microbial communities in ocean sediments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mads Borgbjerg Jensen ◽  
Nadieh de Jonge ◽  
Maja Duus Dolriis ◽  
Caroline Kragelund ◽  
Christian Holst Fischer ◽  
...  

The enzymatic hydrolysis of lignocellulosic polymers is generally considered the rate-limiting step to methane production in anaerobic digestion of lignocellulosic biomass. The present study aimed to investigate how the hydrolytic microbial communities of three different types of anaerobic digesters adapted to lignocellulose-rich wheat straw in continuous stirred tank reactors operated for 134 days. Cellulase and xylanase activities were monitored weekly using fluorescently-labeled model substrates and the enzymatic profiles were correlated with changes in microbial community compositions based on 16S rRNA gene amplicon sequencing to identify key species involved in lignocellulose degradation. The enzymatic activity profiles and microbial community changes revealed reactor-specific adaption of phylogenetically different hydrolytic communities. The enzymatic activities correlated significantly with changes in specific taxonomic groups, including representatives of Ruminiclostridium, Caldicoprobacter, Ruminofilibacter, Ruminococcaceae, Treponema, and Clostridia order MBA03, all of which have been linked to cellulolytic and xylanolytic activity in the literature. By identifying microorganisms with similar development as the cellulase and xylanase activities, the proposed correlation method constitutes a promising approach for deciphering essential cellulolytic and xylanolytic microbial groups for anaerobic digestion of lignocellulosic biomass.


2020 ◽  
Author(s):  
Federica Pinto ◽  
Moreno Zolfo ◽  
Francesco Beghini ◽  
Federica Armanini ◽  
Francesco Asnicar ◽  
...  

AbstractCultivation-free metagenomic analysis afforded unprecedented details on the diversity, structure and potential functions of microbial communities in different environments. When employed to study the viral fraction of the community that is recalcitrant to cultivation, metagenomics can shed light into the diversity of viruses and their role in natural ecosystems. However, despite the increasing interest in virome metagenomics, methodological issues still hinder the proper interpretation and comparison of results across studies. Virome enrichment experimental protocols are key multi-step processes needed for separating and concentrating the viral fraction from the whole microbial community prior to sequencing. However, there is little information on their efficiency and their potential biases. To fill this gap, we used metagenomic and amplicon sequencing to examine the microbial community composition through the serial filtration and concentration steps commonly used to produce viral-enriched metagenomes. The analyses were performed on water and sediment samples from an Alpine lake. We found that, although the diversity of the retained microbial communities declined progressively during the serial filtration, the final viral fraction contained a large proportion (from 10% to 40%) of non-viral taxa, and that the efficacy of filtration showed biases based on taxonomy. Our results quantified the amount of bacterial genetic material in viromes and highlighted the influence of sample type on the enrichment efficacy. Moreover, since viral-enriched samples contained a significant portion of microbial taxa, computational sequence analysis should account for such biases in the downstream interpretation pipeline.ImportanceFiltration is a commonly used method to enrich viral particles in environmental samples. However, there is little information on its efficiency and potential biases on the final result. Using a sequence-based analysis on water and sediment samples, we found that filtration efficacy is dependent on sample type and that the final virome contained a large proportion of non-viral taxa. Our finding stressed the importance of downstream analysis to avoid biased interpretation of data.


2017 ◽  
Author(s):  
Rasmus H. Kirkegaard ◽  
Simon J. McIlroy ◽  
Jannie M. Kristensen ◽  
Marta Nierychlo ◽  
Søren M. Karst ◽  
...  

AbstractAnaerobic digestion is widely applied to treat organic waste at wastewater treatment plants. Characterisation of the underlying microbiology represents a source of information to develop strategies for improved operation. To this end, we investigated the microbial community composition of thirty-two full-scale digesters over a six-year period using 16S rRNA gene amplicon sequencing. Sampling of the sludge fed into these systems revealed that several of the most abundant populations were likely inactive and immigrating with the influent. This observation indicates that a failure to consider immigration will interfere with correlation analysis and give an inaccurate picture of the active microbial community. Furthermore, several abundant OTUs could not be classified to genus level with commonly applied taxonomies, making inference of their function unreliable. As such, the existing MiDAS taxonomy was updated to include these abundant phylotypes. The communities of individual plants surveyed were remarkably similar – with only 300 OTUs representing 80% of the total reads across all plants, and 15% of these identified as likely inactive immigrating microbes. By identifying the abundant and active taxa in anaerobic digestion, this study paves the way for targeted characterisation of the process important organisms towards an in-depth understanding of the microbial ecology of these biotechnologically important systems.


2014 ◽  
Vol 80 (11) ◽  
pp. 3518-3530 ◽  
Author(s):  
Xueju Lin ◽  
Malak M. Tfaily ◽  
J. Megan Steinweg ◽  
Patrick Chanton ◽  
Kaitlin Esson ◽  
...  

ABSTRACTThis study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance ofAcidobacteriaand theSyntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance ofArchaea(primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by theMethanosarcinalesin the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at MEF, and microbial communities are structured by the dominant shrub,Chamaedaphne calyculata, which may act as a carbon source for major consumers in the peatland.


Sign in / Sign up

Export Citation Format

Share Document