scholarly journals The Role of a Dipeptide Transporter in the Virulence of Human Pathogen, Helicobacter pylori

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaohong Xu ◽  
Junwei Chen ◽  
Xiaoxing Huang ◽  
Shunhang Feng ◽  
Xiaoyan Zhang ◽  
...  

Helicobacter pylori harbors a dipeptide (Dpp) transporter consisting of a substrate-binding protein (DppA), two permeases (DppB and C), and two ATPases (DppD and F). The Dpp transporter is responsible for the transportation of dipeptides and short peptides. We found that its expression is important for the growth of H. pylori. To understand the role of the Dpp transporter in the pathogenesis of H. pylori, the expression of virulence factors and H. pylori-induced IL-8 production were investigated in H. pylori wild-type and isogenic H. pylori Dpp transporter mutants. We found that expression of CagA was downregulated, while expression of type 4 secretion system (T4SS) components was upregulated in Dpp transporter mutants. The DppA mutant strain expressed higher levels of outer membrane proteins (OMPs), including BabA, HopZ, OipA, and SabA, and showed a higher adhesion level to gastric epithelial AGS cells compared with the H. pylori 26695 wild-type strain. After infection of AGS cells, H. pylori ΔdppA induced a higher level of NF-κB activation and IL-8 production compared with wild-type. These results suggested that in addition to supporting the growth of H. pylori, the Dpp transporter causes bacteria to alter the expression of virulence factors and reduces H. pylori-induced NF-κB activation and IL-8 production in gastric epithelial cells.

Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 331
Author(s):  
Montserrat Palau ◽  
Núria Piqué ◽  
M. José Ramírez-Lázaro ◽  
Sergio Lario ◽  
Xavier Calvet ◽  
...  

Helicobacter pylori is a common pathogen associated with several severe digestive diseases. Although multiple virulence factors have been described, it is still unclear the role of virulence factors on H. pylori pathogenesis and disease progression. Whole genome sequencing could help to find genetic markers of virulence strains. In this work, we analyzed three complete genomes from isolates obtained at the same point in time from a stomach of a patient with adenocarcinoma, using multiple available bioinformatics tools. The genome analysis of the strains B508A-S1, B508A-T2A and B508A-T4 revealed that they were cagA, babA and sabB/hopO negative. The differences among the three genomes were mainly related to outer membrane proteins, methylases, restriction modification systems and flagellar biosynthesis proteins. The strain B508A-T2A was the only one presenting the genotype vacA s1, and had the most distinct genome as it exhibited fewer shared genes, higher number of unique genes, and more polymorphisms were found in this genome. With all the accumulated information, no significant differences were found among the isolates regarding virulence and origin of the isolates. Nevertheless, some B508A-T2A genome characteristics could be linked to the pathogenicity of H. pylori.


2004 ◽  
Vol 53 (5) ◽  
pp. 375-379 ◽  
Author(s):  
Ramon de Jonge ◽  
Zarmina Durrani ◽  
Sjoerd G. Rijpkema ◽  
Ernst J. Kuipers ◽  
Arnoud H.M. van Vliet ◽  
...  

The human gastric pathogen Helicobacter pylori expresses several putative outer-membrane proteins (OMPs), but the role of individual OMPs in colonization of the stomach by H. pylori is still poorly understood. The role of four such OMPs (AlpA, AlpB, OipA and HopZ) in a guinea pig model of H. pylori infection has been investigated. Single alpA, alpB, hopZ and oipA isogenic mutants were constructed in the guinea pig-adapted, wild-type H. pylori strain GP15. Guinea pigs were inoculated intragastrically with the wild-type strain, single mutants or a mixture of the wild-type and a single mutant in a 1 : 1 ratio. Three weeks after infection, H. pylori could be isolated from stomach sections of all animals that were infected with the wild-type, the hopZ mutant or the oipA mutant, but from only five of nine (P = 0.18) and one of seven (P = 0.02) animals that were infected with the alpA or alpB mutants, respectively. The hopZ and oipA mutants colonized the majority of animals that were inoculated with the strain mixture, whereas alpA and alpB mutants could not be isolated from animals that were infected with the strain mixture (P < 0.01). Specific IgG antibody responses were observed in all animals that were infected with either the wild-type or a mutant, but IgG levels were lower in animals that were infected with either the alpA or the alpB mutants, compared to the wild-type strain (P < 0.05). In conclusion, absence of AlpA or AlpB is a serious disadvantage for colonization of the stomach by H. pylori.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


2004 ◽  
Vol 72 (9) ◽  
pp. 5506-5510 ◽  
Author(s):  
John T. Loh ◽  
Mark H. Forsyth ◽  
Timothy L. Cover

ABSTRACT LuxS plays a role in the synthesis of an extracellular signaling molecule, autoinducer 2 (AI-2). To analyze a possible role of AI-2 in regulating Helicobacter pylori gene expression, we constructed a panel of transcriptional reporter strains. We show that the expression of H. pylori flaA is growth phase dependent and that flaA transcription increases in association with increased culture density. Mutating the luxS gene eliminates growth-phase-dependent control of flaA, and this growth phase dependence is restored when the luxS mutant strain is complemented with the wild-type luxS gene.


2009 ◽  
Vol 21 (06) ◽  
pp. 433-436
Author(s):  
Chi-Chang Lin ◽  
Sheng-Kai Li ◽  
Bor-Shyang Sheu ◽  
Hsien-Chang Chang

A simple, fast, real-time, and nondestructive analysis of protein expression in biological samples, such as membranes, based on dielectrophoresis is described. On the basis of the distinct differences in the dielectrophoretic properties of individual cell types, the wild-type BabA-positive Helicobacter pylori isolates and its BabA-negative isogenic mutant can be identified and separated. The herein-presented approach of using microelectrodes should be an easy-to-use, cheap, and rapid alternative to separate and distinguish the presence or absence of important outer-membrane proteins.


2005 ◽  
Vol 73 (3) ◽  
pp. 1820-1827 ◽  
Author(s):  
David J. McGee ◽  
Melanie L. Langford ◽  
Emily L. Watson ◽  
J. Elliot Carter ◽  
Yu-Ting Chen ◽  
...  

ABSTRACT Helicobacter pylori causes disease in the human stomach and in mouse and gerbil stomach models. Previous results have shown that motility is critical for H. pylori to colonize mice, gerbils, and other animal models. The role of chemotaxis, however, in colonization and disease is less well understood. Two genes in the H. pylori chemotaxis pathway, cheY and tlpB, which encode the chemotaxis response regulator and a methyl-accepting chemoreceptor, respectively, were disrupted. The cheY mutation was complemented with a wild-type copy of cheY inserted into the chromosomal rdxA gene. The cheY mutant lost chemotaxis but retained motility, while all other strains were motile and chemotactic in vitro. These strains were inoculated into gerbils either alone or in combination with the wild-type strain, and colonization and inflammation were assessed. While the cheY mutant completely failed to colonize gerbil stomachs, the tlpB mutant colonized at levels similar to those of the wild type. With the tlpB mutant, there was a substantial decrease in inflammation in the gerbil stomach compared to that with the wild type. Furthermore, there were differences in the numbers of each immune cell in the tlpB-mutant-infected stomach: the ratio of lymphocytes to neutrophils was about 8 to 1 in the wild type but only about 1 to 1 in the mutant. These results suggest that the TlpB chemoreceptor plays an important role in the inflammatory response while the CheY chemotaxis regulator plays a critical role in initial colonization. Chemotaxis mutants may provide new insights into the steps involved in H. pylori pathogenesis.


2010 ◽  
Vol 192 (5) ◽  
pp. 1184-1192 ◽  
Author(s):  
Neil C. Doherty ◽  
Feifei Shen ◽  
Nigel M. Halliday ◽  
David A. Barrett ◽  
Kim R. Hardie ◽  
...  

ABSTRACT In many bacteria, LuxS functions as a quorum-sensing molecule synthase. However, it also has a second, more central metabolic function in the activated methyl cycle (AMC), which generates the S-adenosylmethionine required by methyltransferases and recycles the product via methionine. Helicobacter pylori lacks an enzyme catalyzing homocysteine-to-methionine conversion, rendering the AMC incomplete and thus making any metabolic role of H. pylori LuxS (LuxSHp) unclear. Interestingly, luxS Hp is located next to genes annotated as cysK Hp and metB Hp, involved in other bacteria in cysteine and methionine metabolism. We showed that isogenic strains carrying mutations in luxS Hp, cysK Hp, and metB Hp could not grow without added cysteine (whereas the wild type could), suggesting roles in cysteine synthesis. Growth of the ΔluxS Hp mutant was restored by homocysteine or cystathionine and growth of the ΔcysK Hp mutant by cystathionine only. The ΔmetB Hp mutant had an absolute requirement for cysteine. Metabolite analyses showed that S-ribosylhomocysteine accumulated in the ΔluxS Hp mutant, homocysteine in the ΔcysK Hp mutant, and cystathionine in the ΔmetB Hp mutant. This suggests that S-ribosylhomocysteine is converted by LuxSHp to homocysteine (as in the classic AMC) and thence by CysKHp to cystathionine and by MetBHp to cysteine. In silico analysis suggested that cysK-metB-luxS were acquired by H. pylori from a Gram-positive source. We conclude that cysK-metB-luxS encode the capacity to generate cysteine from products of the incomplete AMC of H. pylori in a process of reverse transsulfuration. We recommend that the misnamed genes cysK Hp and metB Hp be renamed mccA (methionine-to-cysteine-conversion gene A) and mccB, respectively.


2008 ◽  
Vol 57 (2) ◽  
pp. 145-150 ◽  
Author(s):  
Richard H. Argent ◽  
Rachael J. Thomas ◽  
Darren P. Letley ◽  
Michael G. Rittig ◽  
Kim R. Hardie ◽  
...  

The Helicobacter pylori virulence factors CagA and VacA are implicated in the development of gastroduodenal diseases. Most strains possessing CagA also possess the more virulent vacuolating form of VacA. This study assessed the significance of possession of both virulence factors in terms of their effect on gastric epithelial cells, using a set of minimally passaged, isogenic VacA, CagA and CagE mutants in H. pylori strains 60190 and 84-183. The cagA and cagE mutants were found to significantly increase VacA-induced vacuolation of epithelial cells, and the vacA mutants significantly increased CagA-induced cellular elongations, compared with wild-type strains, indicating that CagA reduces vacuolation and VacA reduces hummingbird formation. Although epithelial cells incubated with the wild-type H. pylori strains may display both vacuolation and hummingbird formation, it was found that (i) hummingbird length was significantly reduced in vacuolated cells compared with those without vacuolation; (ii) the number of vacuoles was significantly reduced in vacuolated cells with hummingbird formation compared with those without hummingbirds; and (iii) cells displaying extensive vacuolation did not subsequently form hummingbirds and vice versa. VacA did not affect the phosphorylation of CagA. These data show that VacA and CagA downregulate each other's effects on epithelial cells, potentially allowing H. pylori interaction with cells whilst avoiding excessive cellular damage.


2021 ◽  
Vol 22 (18) ◽  
pp. 10035
Author(s):  
Hyun Woo Kim ◽  
Hyun Jun Woo ◽  
Ji Yeong Yang ◽  
Jong-Bae Kim ◽  
Sa-Hyun Kim

Helicobacter pylori (H. pylori) is a bacterium known to infect the human stomach. It can cause various gastrointestinal diseases including gastritis and gastric cancer. Hesperetin is a major flavanone component contained in citrus fruits. It has been reported to possess antibacterial, antioxidant, and anticancer effects. However, the antibacterial mechanism of hesperetin against H. pylori has not been reported yet. Therefore, the objective of this study was to determine the inhibitory effects of hesperetin on H. pylori growth and its inhibitory mechanisms. The results of this study showed that hesperetin inhibits the growth of H. pylori reference strains and clinical isolates. Hesperetin inhibits the expression of genes in replication (dnaE, dnaN, dnaQ, and holB) and transcription (rpoA, rpoB, rpoD, and rpoN) machineries of H. pylori. Hesperetin also inhibits the expression of genes related to H. pylori motility (flhA, flaA, and flgE) and adhesion (sabA, alpA, alpB, hpaA, and hopZ). It also inhibits the expression of urease. Hespereti n downregulates major virulence factors such as cytotoxin-associated antigen A (CagA) and vacuolating cytotoxin A (VacA) and decreases the translocation of CagA and VacA proteins into gastric adenocarcinoma (AGS) cells. These results might be due to decreased expression of the type IV secretion system (T4SS) and type V secretion system (T5SS) involved in translocation of CagA and VacA, respectively. The results of this study indicate that hesperetin has antibacterial effects against H. pylori. Thus, hesperetin might be an effective natural product for the eradication of H. pylori.


2005 ◽  
Vol 187 (15) ◽  
pp. 5156-5165 ◽  
Author(s):  
Koji Hiratsuka ◽  
Susan M. Logan ◽  
J. Wayne Conlan ◽  
Vandana Chandan ◽  
Annie Aubry ◽  
...  

ABSTRACT We have identified a Helicobacter pylori d-glycero-d-manno-heptosyltransferase gene, HP0479, which is involved in the biosynthesis of the outer core region of H. pylori lipopolysaccharide (LPS). Insertional inactivation of HP0479 resulted in formation of a truncated LPS molecule lacking an α-1,6-glucan-, dd-heptose-containing outer core region and O-chain polysaccharide. Detailed structural analysis of purified LPS from HP0479 mutants of strains SS1, 26695, O:3, and PJ1 by a combination of chemical and mass spectrometric methods showed that HP0479 likely encodes α-1,2-d-glycero-d-manno-heptosyltransferase, which adds a d-glycero-d-manno-heptose residue (DDHepII) to a distal dd-heptose of the core oligosaccharide backbone of H. pylori LPS. When the wild-type HP0479 gene was reintegrated into the chromosome of strain 26695 by using an “antibiotic cassette swapping” method, the complete LPS structure was restored. Introduction of the HP0479 mutation into the H. pylori mouse-colonizing Sydney (SS1) strain and the clinical isolate PJ1, which expresses dd-heptoglycan, resulted in the loss of colonization in a mouse model. This indicates that H. pylori expressing a deeply truncated LPS is unable to successfully colonize the murine stomach and provides evidence for a critical role of the outer core region of H. pylori LPS in colonization.


Sign in / Sign up

Export Citation Format

Share Document