scholarly journals Antimicrobial Activities of Alginate and Chitosan Oligosaccharides Against Staphylococcus aureus and Group B Streptococcus

2021 ◽  
Vol 12 ◽  
Author(s):  
Mostafa Asadpoor ◽  
Georgia-Nefeli Ithakisiou ◽  
Jos P. M. van Putten ◽  
Roland J. Pieters ◽  
Gert Folkerts ◽  
...  

The bacterial pathogens Streptococcus agalactiae (GBS) and Staphylococcus aureus (S. aureus) cause serious infections in humans and animals. The emergence of antibiotic-resistant isolates and bacterial biofilm formation entails the urge of novel treatment strategies. Recently, there is a profound scientific interest in the capabilities of non-digestible oligosaccharides as antimicrobial and anti-biofilm agents as well as adjuvants in antibiotic combination therapies. In this study, we investigated the potential of alginate oligosaccharides (AOS) and chitosan oligosaccharides (COS) as alternative for, or in combination with antibiotic treatment. AOS (2–16%) significantly decreased GBS V growth by determining the minimum inhibitory concentration. Both AOS (8 and 16%) and COS (2–16%) were able to prevent biofilm formation by S. aureus wood 46. A checkerboard biofilm formation assay demonstrated a synergistic effect of COS and clindamycin on the S. aureus biofilm formation, while AOS (2 and 4%) were found to sensitize GBS V to trimethoprim. In conclusion, AOS and COS affect the growth of GBS V and S. aureus wood 46 and can function as anti-biofilm agents. The promising effects of AOS and COS in combination with different antibiotics may offer new opportunities to combat antimicrobial resistance.

Author(s):  
Adrián Ramírez-Granillo ◽  
Luis Antonio Bautista-Hernández ◽  
Víctor Manuel Bautista-De Lucío ◽  
Fátima Sofía Magaña-Guerrero ◽  
Alfredo Domínguez-López ◽  
...  

BackgroundCoinfections with fungi and bacteria in ocular pathologies are increasing at an alarming rate. Two of the main etiologic agents of infections on the corneal surface, such as Aspergillus fumigatus and Staphylococcus aureus, can form a biofilm. However, mixed fungal–bacterial biofilms are rarely reported in ocular infections. The implementation of cell cultures as a study model related to biofilm microbial keratitis will allow understanding the pathogenesis in the cornea. The cornea maintains a pathogen-free ocular surface in which human limbo-corneal fibroblast cells are part of its cell regeneration process. There are no reports of biofilm formation assays on limbo-corneal fibroblasts, as well as their behavior with a polymicrobial infection.ObjectiveTo determine the capacity of biofilm formation during this fungal–bacterial interaction on primary limbo-corneal fibroblast monolayers.ResultsThe biofilm on the limbo-corneal fibroblast culture was analyzed by assessing biomass production and determining metabolic activity. Furthermore, the mixed biofilm effect on this cell culture was observed with several microscopy techniques. The single and mixed biofilm was higher on the limbo-corneal fibroblast monolayer than on abiotic surfaces. The A. fumigatus biofilm on the human limbo-corneal fibroblast culture showed a considerable decrease compared to the S. aureus biofilm on the limbo-corneal fibroblast monolayer. Moreover, the mixed biofilm had a lower density than that of the single biofilm. Antibiosis between A. fumigatus and S. aureus persisted during the challenge to limbo-corneal fibroblasts, but it seems that the fungus was more effectively inhibited.ConclusionThis is the first report of mixed fungal–bacterial biofilm production and morphological characterization on the limbo-corneal fibroblast monolayer. Three antibiosis behaviors were observed between fungi, bacteria, and limbo-corneal fibroblasts. The mycophagy effect over A. fumigatus by S. aureus was exacerbated on the limbo-corneal fibroblast monolayer. During fungal–bacterial interactions, it appears that limbo-corneal fibroblasts showed some phagocytic activity, demonstrating tripartite relationships during coinfection.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Shizhou Wu ◽  
Yunjie Liu ◽  
Lei Lei ◽  
Hui Zhang

Abstract Objectives Methicillin-resistant Staphylococcus aureus (MRSA) strains present an urgent medical problem in osteomyelitis cases. Our previous study indicated that the YycFG two-component regulatory pathway is associated with the bacterial biofilm organization of MRSA strains. The aim of this study was to investigate the regulatory roles of ASyycG in the bacterial biofilm formation and the pathogenicity of MRSA strains using an antisense RNA strategy. Methods An ASyycG-overexpressing MRSA clinical isolate was constructed. The bacterial growth was monitored, and the biofilm biomass on bone specimens was examined using scanning electron microscopy and confocal laser scanning microscopy. Furthermore, quantitative RT-PCR (QRT-PCR) analysis was used to measure the expression of yycF/G/H and icaA/D in the MRSA and ASyycG strains. The expression of the YycG protein was quantified by Western blot assays. We validated the role of ASyycG in the invasive ability and pathogenicity of the strains in vivo using histology and peptide nucleic acid fluorescent in situ hybridization. Results The results showed that overexpression of ASyycG lead to a reduction in biofilm formation and exopolysaccharide (EPS) synthesis compared to the control MRSA strains. The ASyycG strains exhibited decreased expression of the yycF/G/H and icaA/D genes. Furthermore, Western blot data showed that the production of the YycG protein was inhibited in the ASyycG strains. In addition, we demonstrated that ASyycG suppressed the invasive ability and pathogenicity of the strain in vivo using an SPF (specific pathogen free) rat model. Conclusion In summary, the overexpression of ASyycG leads to a reduction in biofilm formation and bacterial pathogenicity in vivo, which provides a potential target for the management of MRSA-induced osteomyelitis.


2010 ◽  
Vol 124 (6) ◽  
pp. 594-598 ◽  
Author(s):  
C H Jang ◽  
H Park ◽  
Y B Cho ◽  
C H Choi

AbstractBackground and objective:Bacterial biofilm formation has been implicated in the high incidence of persistent otorrhoea after tympanostomy tube insertion. It has been suggested that the tube material may be an important factor in the persistence of such otorrhoea. Development of methicillin-resistant Staphylococcus aureus otorrhoea after tympanostomy tube placement is a growing concern. We evaluated the effect of using vancomycin and chitosan coated tympanostomy tubes on the incidence of methicillin-resistant Staphylococcus aureus biofilm formation in vitro.Materials and methods:Three sets each of vancomycin-coated silicone tubes (n = 5), commercial silver oxide coated silicone tubes (n = 5) and uncoated tympanostomy tubes (as controls; n = 5) were compared as regards resistance to methicillin-resistant Staphylococcus aureus biofilm formation after in vitro incubation.Results:Scanning electron microscopy showed that the surfaces of the silver oxide coated tubes supported the formation of thick biofilms with crusts, comparable to the appearance of the uncoated tubes. In contrast, the surface of the vancomycin-coated tympanostomy tubes was virtually devoid of methicillin-resistant Staphylococcus aureus biofilm.Conclusion:Vancomycin-coated tympanostomy tubes resist methicillin-resistant Staphylococcus aureus biofilm formation. Pending further study, such tubes show promise in assisting the control of methicillin-resistant Staphylococcus aureus biofilm formation.


2015 ◽  
Vol 82 (1) ◽  
pp. 394-401 ◽  
Author(s):  
Jakub Kwiecinski ◽  
Manli Na ◽  
Anders Jarneborn ◽  
Gunnar Jacobsson ◽  
Marijke Peetermans ◽  
...  

ABSTRACTStaphylococcus aureusbiofilm infections of indwelling medical devices are a major medical challenge because of their high prevalence and antibiotic resistance. As fibrin plays an important role inS. aureusbiofilm formation, we hypothesize that coating of the implant surface with fibrinolytic agents can be used as a new method of antibiofilm prophylaxis. The effect of tissue plasminogen activator (tPA) coating onS. aureusbiofilm formation was tested within vitromicroplate biofilm assays and anin vivomouse model of biofilm infection. tPA coating efficiently inhibited biofilm formation by variousS. aureusstrains. The effect was dependent on plasminogen activation by tPA, leading to subsequent local fibrin cleavage. A tPA coating on implant surfaces prevented both early adhesion and later biomass accumulation. Furthermore, tPA coating increased the susceptibility of biofilm infections to antibiotics.In vivo, significantly fewer bacteria were detected on the surfaces of implants coated with tPA than on control implants from mice treated with cloxacillin. Fibrinolytic coatings (e.g., with tPA) reduceS. aureusbiofilm formation bothin vitroandin vivo, suggesting a novel way to prevent bacterial biofilm infections of indwelling medical devices.


Author(s):  
Dinesh Kumar ◽  
Priya Mehrishi ◽  
Sameer Singh Faujdar ◽  
Satish Kumar ◽  
Amisha Sharma

Occurrence of Staphylococcus aureus in children with osteomyelitis. This study was conducted at K. M. M. C. & Hospital, Mathura (UP). A total of 60 patients with osteomyelitis contributed to this study from October 2017 to October 2019. Patients with known immunodeficiency syndromes were excluded. Specimen collections were meticulously performed to avoid contamination which was accomplished by needle aspiration or surgical sampling. Staphylococcus aureus was recovered in more than half of the cases of osteomyelitis in both infants and children. Amikacin, Clindamycin and Cefazolin were effective in such cases. The distal end of the femur and upper-end tibia were the most common sites of infection where boys were more infected than girls. The haematogenous route was the main cause of the transmission of osteomyelitis in children. Principally Staphylococcus aureus causes the majority of cases of osteomyelitis in children followed by H. influenza, Group B Streptococcus, P. aeruginosa, E. coli and Serratia marcescens.


2019 ◽  
Vol 20 (14) ◽  
pp. 1223-1233 ◽  
Author(s):  
Fazlurrahman Khan ◽  
Jang-Won Lee ◽  
Dung T.N. Pham ◽  
Young-Mog Kim

Background: Staphylococcus aureus nosocomial infections with a high mortality rate in human and animals have been reported to associate with bacterial biofilm formation, along with the secretion of numerous virulence factors. Therefore, the inhibition of biofilm formation and attenuation of virulence determinants are considered as a promising solution to combat the spread of S. aureus infections. Modern trends in antibiofilm therapies have opted for the active agents that are biocompatible, biodegradable, non-toxic and cost-effective. Owning the aforementioned properties, chitosan, a natural N-acetylated carbohydrate biopolymer derived from chitin, has been favorably employed. Recently, the chitosan structure has been chemically modified into Chitooligosaccharides (COS) to overcome its limited solubility in water, thus widening chitosan applications in modern antibiofilm research. In the present study, we have investigated the antibacterial, antibiofilm and anti-virulence activities against S. aureus of COS of different molecular weights dissolved in neutral water. Methods: The study of bactericidal activity was performed using the micro-dilution method while the biofilm inhibition assay was performed using crystal-violet staining method and confirmed by scanning electron microscopic analysis. The inhibition of amyloid protein production was confirmed by Congo Red staining. Results: Results showed that low molecular weight COS exhibited bactericidal activity and reduced the bacterial amylogenesis, hemolytic activity as well as H2O2 resistance properties, while slightly inhibiting biofilm formation. The present study provides a new insight for further applications of the water-soluble COS as a safe and cost-effective drug for the treatment of S. aureus biofilm-associated infections. Conclusion: Reducing the molecular weight of chitosan in the form of COS has become an effective strategy to maintain chitosan biological activity while improving its water solubility. The low molecular weight COS investigated in this study have effectively performed antibacterial, antibiofilm and antivirulence properties against S. aureus.


2021 ◽  
Author(s):  
lydiariver not provided

Group B Streptococcus agalactiae has CAMP factor which allow it to hemolized zones when it is grown on blood agar plates near to Staphylococcus aureus ATCC 25293 colonies, this effect is brought about by Staphylococcus aureus sphingomyelinase.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2030
Author(s):  
Anna Minkiewicz-Zochniak ◽  
Sylwia Jarzynka ◽  
Agnieszka Iwańska ◽  
Kamila Strom ◽  
Bartłomiej Iwańczyk ◽  
...  

Implants made of ceramic and metallic elements, which are used in dentistry, may either promote or hinder the colonization and adhesion of bacteria to the surface of the biomaterial to varying degrees. The increased interest in the use of dental implants, especially in patients with chronic systemic diseases such as cystic fibrosis (CF), is caused by an increase in disease complications. In this study, we evaluated the differences in the in vitro biofilm formation on the surface of biomaterials commonly used in dentistry (Ti-6Al-4V, cobalt-chromium alloy (CoCr), and zirconia) by Staphylococcus aureus isolated from patients with CF. We demonstrated that S. aureus adherence and growth depends on the type of material used and its surface topography. Weaker bacterial biofilm formation was observed on zirconia surfaces compared to titanium and cobalt-chromium alloy surfaces. Moreover, scanning electron microscopy showed clear differences in bacterial aggregation, depending on the type of biomaterial used. Over the past several decades, S. aureus strains have developed several mechanisms of resistance, especially in patients on chronic antibiotic treatment such as CF. Therefore, the selection of an appropriate implant biomaterial with limited microorganism adhesion characteristics can affect the occurrence and progression of oral cavity infections, particularly in patients with chronic systemic diseases.


Sign in / Sign up

Export Citation Format

Share Document