scholarly journals Prevalence and Characteristics of Ceftriaxone-Resistant Salmonella in Children’s Hospital in Hangzhou, China

2021 ◽  
Vol 12 ◽  
Author(s):  
Qiucheng Shi ◽  
Yihua Ye ◽  
Peng Lan ◽  
Xinhong Han ◽  
Jingjing Quan ◽  
...  

The non-Typhi Salmonella (NTS) infection is critical to children’s health, and the ceftriaxone is the important empirical treatment choice. With the increase resistance rate of ceftriaxone in Salmonella, the molecular epidemiology and resistance mechanism of ceftriaxone-resistant Salmonella needs to be studied. From July 2019 to July 2020, a total of 205 NTS isolates were collected, 195 of which (95.1%) were cultured from stool, but 10 isolates were isolated from an extraintestinal site. Serogroup B accounted for the vast majority (137/205) among the isolates. Fifty-three isolates were resistant to ceftriaxone, and 50 were isolated from children younger than 4years of age. The resistance rates for ceftriaxone, ciprofloxacin, and levofloxacin were significantly higher in younger children than the older children. The resistance genes in the ceftriaxone-susceptible isolates were detected by PCR, and ceftriaxone-resistant Salmonella were selected for further whole-genome sequencing. Whole-genome analysis showed that serotype Typhimurium and its monophasic variant was the most prevalent in ceftriaxone-resistant isolates (37/53), which comprised ST34 (33/53), ST19 (2/53), and ST99 (2/53), and they were close related in the phylogenetic tree. However, the other isolates were diverse, which included one Enteritidis (ST11), one Indiana (ST17), one Derby (ST40), four Kentucky (ST198), two Goldcoast (ST2529, ST358), one Muenster (ST321), one Virchow (ST359), one Rissen (ST469), one Kedougou (ST1543), two Uganda (ST684), and one Kottbus (ST8839). Moreover, CTX-M-55 ESBLs production (33/53) was found to be mainly responsible for ceftriaxone resistance, followed by blaCTX-M-65 (12/53), blaCTX-M-14 (4/53), blaCTX-M-9 (2/53), blaCTX-M-64 (1/53), blaCTX-M-130 (1/53), and blaCMY-2 (1/53). ISEcp1, IS903B, IS Kpn26, IS1F, and IS26 were connected to antimicrobial resistance genes transfer. In conclusion, the dissemination of ESBL-producing Salmonella isolates resulted in an increased prevalence of ceftriaxone resistance in young children. The high rate of multidrug resistance should be given additional attention.

2019 ◽  
Vol 75 (3) ◽  
pp. 526-530 ◽  
Author(s):  
Ruixue Hu ◽  
Qi Zhang ◽  
Zemao Gu

Abstract Objectives Elizabethkingia is an emerging life-threatening pathogen in both humans and animals. We describe the whole-genome analysis of an Elizabethkingia miricola strain isolated from a diseased frog in China and investigate the molecular mechanism of carbapenem resistance in this pathogen. Methods WGS of E. miricola FL160902 was performed using single-molecule, real-time technology. A phylogenetic tree was generated by SNP analysis, comparing the genome of our strain with other E. miricola isolates of amphibian and human origins. Antimicrobial resistance genes and virulence-related genes were identified using the Comprehensive Antibiotic Resistance Database (CARD) and the Virulence Factor Database (VFDB). Two putative carbapenemase genes were expressed in Escherichia coli to evaluate their contribution to antimicrobial resistance. Results The genome of E. miricola FL160902 consists of a 4 249 586 bp circular chromosome with 27 putative resistance genes and 38 predicted virulence-associated genes. Comparative genomic analysis demonstrated that the E. miricola strains of human and amphibian origins have similar virulence-associated gene profiles. In addition, all the amphibian isolates clustered together with one of the human isolates in the phylogenetic analysis. WGS revealed the presence of two novel MBL genes, designated blaBlaB-16 and blaGOB-19. Cloning of blaBlaB-16 and blaGOB-19 into E. coli DH5α resulted in increased MICs of most β-lactams, including imipenem, meropenem and ampicillin. Conclusions We identified two chromosomal MBL gene variants, named blaBlaB-16 and blaGOB-19 in an amphibian E. miricola isolate, which was considered potentially zoonotic based on phylogenetic analysis and virulence-associated gene comparison. This study highlights the importance of E. miricola as a potential zoonotic pathogen and a reservoir of MDR genes.


2017 ◽  
Vol 56 (3) ◽  
Author(s):  
C. W. Knetsch ◽  
N. Kumar ◽  
S. C. Forster ◽  
T. R. Connor ◽  
H. P. Browne ◽  
...  

ABSTRACTThe emergence ofClostridium difficileas a significant human diarrheal pathogen is associated with the production of highly transmissible spores and the acquisition of antimicrobial resistance genes (ARGs) and virulence factors. Unlike the hospital-associatedC. difficileRT027 lineage, the community-associatedC. difficileRT078 lineage is isolated from both humans and farm animals; however, the geographical population structure and transmission networks remain unknown. Here, we applied whole-genome phylogenetic analysis of 248C. difficileRT078 strains from 22 countries. Our results demonstrate limited geographical clustering forC. difficileRT078 and extensive coclustering of human and animal strains, thereby revealing a highly linked intercontinental transmission network between humans and animals. Comparative whole-genome analysis reveals indistinguishable accessory genomes between human and animal strains and a variety of antimicrobial resistance genes in the pangenome ofC. difficileRT078. Thus, bidirectional spread ofC. difficileRT078 between farm animals and humans may represent an unappreciated route disseminating antimicrobial resistance genes between humans and animals. These results highlight the importance of the “One Health” concept to monitor infectious disease emergence and the dissemination of antimicrobial resistance genes.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quan Li ◽  
Jian Yin ◽  
Zheng Li ◽  
Zewei Li ◽  
Yuanzhao Du ◽  
...  

AbstractSalmonella is an important food-borne pathogen associated with public health and high economic losses. To investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemination of the resistance genes to consumers along the production chain, suggesting the importance of controlling Salmonella during slaughter for public health.


Author(s):  
Zhiwei Zheng ◽  
Lianwei Ye ◽  
Ruichao Li ◽  
Sheng Chen

Abstract Objectives To investigate the prevalence and genetic contexts of the blaCTX-M-14 gene harboured by foodborne isolates of Vibrio spp. in China. Methods A total of 1856 Vibrio spp. isolates collected from raw meat and shrimp samples in Guangdong Province of China were screened for blaCTX-M-14 by PCR. The blaCTX-M-14-positive isolates were characterized by MIC, PFGE, MLST, conjugation, S1-PFGE and Southern blotting and WGS using Illumina and Nanopore platforms. Results A total of 35 (1.9%) Vibrio isolates were positive for blaCTX-M-14, including 33 Vibrio parahaemolyticus strains and two Vibrio alginolyticus strains. MLST showed that most of the blaCTX-M-14-bearing isolates could be assigned into two major STs, with ST163 being more prevalent (n = 23), followed by ST180 (n = 6). Whole-genome analysis of these 35 isolates revealed that the blaCTX-M-14 gene was associated with ISEcp1 in the upstream region, of which 32 blaCTX-M-14 genes were located in the same loci of chromosome I, 1 blaCTX-M-14 gene was located in a novel chromosomal integrative conjugative element (ICE) belonging to the SXT/R391 family and 2 blaCTX-M-14 genes were located in the same type of plasmid, which belonged to the IncP-1 group. Conjugation experiments showed that only the plasmid-borne blaCTX-M-14 gene could be transferred to the recipient strain Escherichia coli J53. Conclusions The emergence of the novel ICE and IncP-1 plasmids has contributed to the variable genetic contexts of blaCTX-M-14 among strains of Vibrio spp. and facilitated the horizontal transfer of such genes between Vibrio spp. and other zoonotic pathogens, resulting in a rapid increase in the prevalence of blaCTX-M-14-bearing bacterial pathogens worldwide.


2019 ◽  
Vol 57 (9) ◽  
Author(s):  
Xuebing Wang ◽  
Haijian Zhou ◽  
Dongke Chen ◽  
Pengcheng Du ◽  
Ruiting Lan ◽  
...  

ABSTRACT Corynebacterium striatum is an emerging multidrug-resistant (MDR) pathogen that occurs primarily among immunocompromised and chronically ill patients. However, little is known about the genomic diversity of C. striatum, which contributes to its long-term persistence and transmission in hospitals. In this study, a total of 192 C. striatum isolates obtained from 14 September 2017 to 29 March 2018 in a hospital in Beijing, China, were analyzed by antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE). Whole-genome sequencing was conducted on 91 isolates. Nearly all isolates (96.3%, 183/190) were MDR. The highest resistance rate was observed for ciprofloxacin (99.0%, 190/192), followed by cefotaxime (90.6%, 174/192) and erythromycin (89.1%, 171/192). PFGE separated the 192 isolates into 79 pulsotypes, and differences in core genome single-nucleotide polymorphisms (SNPs) partitioned the 91 isolates sequenced into four clades. Isolates of the same pulsotype were identical or nearly identical at the genome level, with some exceptions. Two dominant subclones, clade 3a, and clade 4a, were responsible for the hospital-wide dissemination. Genomic analysis further revealed nine resistance genes mobilized by eight unique cassettes. PFGE and whole-genome sequencing revealed that the C. striatum isolates studied were the result mainly of predominant clones spreading in the hospital. C. striatum isolates in the hospital progressively acquired resistance to antimicrobial agents, demonstrating that isolates of C. striatum may adapt rapidly through the acquisition and accumulation of resistance genes and thus evolve into dominant and persistent clones. These insights will be useful for the prevention of C. striatum infection in hospitals.


Author(s):  
Justine Schaeffer ◽  
Steliana Huhulescu ◽  
Anna Stoeger ◽  
Franz Allerberger ◽  
Werner Ruppitsch

Background: Diphtheria is a vaccine preventable disease with a high potential for re-emergence. One of its causative agent is Corynebacterium diphtheriae, some strains producing the diphtheria toxin. From 2011 to 2019, 57 clinical C. diphtheriae strains were isolated in Austria, either from the respiratory track or from skin infections. Objectives: The aim of the study was to investigate the genetic diversity of these C. diphtheriae isolates using whole genome sequencing. Methods: Isolates were characterized by genome wide comparison using single nucleotide polymorphism or core genome multilocus sequence typing, and by searching sequence data for antimicrobial resistance genes and genes involved in diphtheria toxin production. Results: Genetic diversity between the isolates was high, with no clear distribution over time or place. C. belfantii isolates were separated from other strains, and were strongly associated with respiratory infections (OR = 57). Two clusters, limited in time and space, were identified. Almost 40% of strains carried resistance genes against tetracycline or sulfonamides, mostly from skin infections. Microbiological tests showed that 55% of isolates were resistant to penicillin, but did not carry genes conferring β-lactam resistance. Diphtheria toxin gene with no non-synonymous mutation was found in three isolates only. Conclusion: This study showed that sequencing can provide valuable information complementing routine microbiological and epidemiological investigations. It allowed us to identify unknown clusters, evaluate antimicrobial resistances more broadly and support toxigenicity results obtained by PCR. For these reasons, C. diphtheriae surveillance could strongly benefit from the routine implementation of whole genome sequencing.


2020 ◽  
Vol 11 ◽  
Author(s):  
Grazielle Lima Rodrigues ◽  
Pedro Panzenhagen ◽  
Rafaela Gomes Ferrari ◽  
Anamaria dos Santos ◽  
Vania Margaret Flosi Paschoalin ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Feng Zhang ◽  
Shi Wu ◽  
Jiahui Huang ◽  
Runshi Yang ◽  
Jumei Zhang ◽  
...  

Antimicrobial resistance has become a major public health threat. Food-related Staphylococcus species have received much attention due to their multidrug resistance. The cfr gene associated with multidrug resistance has been consistently detected in food-derived Staphylococcus species. In this retrospective study, we examined the prevalence of cfr-positive Staphylococcus strains isolated from poultry meat in different geographical areas of China from 2011 to 2016. Two cfr-positive Staphylococcus delphini strains were identified from poultry meat in China. Comparative and whole-genome analyses were performed to characterize the genetic features and overall antimicrobial resistance genes in the two S. delphini isolates 245-1 and 2794-1. Whole-genome sequencing showed that they both harbored a novel 20,258-bp cfr-carrying Tn558 transposon derivative on their chromosomes. The Tn558 derivative harbors multiple antimicrobial resistance genes, including the transferable multiresistance gene cfr, chloramphenicol resistance gene fexA, aminoglycoside resistance genes aacA-aphD and aadD, and bleomycin resistance gene ble. Surprisingly, within the Tn558 derivative, an active unconventional circularizable structure containing various resistance genes and a copy of a direct repeat sequence was identified by two-step PCR. Furthermore, core genome phylogenetic analysis revealed that the cfr-positive S. delphini strains were most closely related to S. delphini 14S03313-1 isolated from Japan in 2017 and 14S03319-1 isolated from Switzerland in 2017. This study is the first report of S. delphini harboring a novel cfr-carrying Tn558 derivative isolated from retail food. This finding raises further concerns regarding the potential threat to food safety and public health safety. The occurrence and dissemination of similar cfr-carrying transposons from diverse Staphylococcus species need further surveillance.


Sign in / Sign up

Export Citation Format

Share Document