scholarly journals Serotype distribution, antimicrobial susceptibility, antimicrobial resistance genes and virulence genes of Salmonella isolated from a pig slaughterhouse in Yangzhou, China

AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quan Li ◽  
Jian Yin ◽  
Zheng Li ◽  
Zewei Li ◽  
Yuanzhao Du ◽  
...  

AbstractSalmonella is an important food-borne pathogen associated with public health and high economic losses. To investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemination of the resistance genes to consumers along the production chain, suggesting the importance of controlling Salmonella during slaughter for public health.

2006 ◽  
Vol 72 (6) ◽  
pp. 4200-4206 ◽  
Author(s):  
Katia Hamelin ◽  
Guillaume Bruant ◽  
Abdel El-Shaarawi ◽  
Stephen Hill ◽  
Thomas A. Edge ◽  
...  

ABSTRACT Escherichia coli is generally described as a commensal species with occasional pathogenic strains. Due to technological limitations, there is currently little information concerning the prevalence of pathogenic E. coli strains in the environment. For the first time, using a DNA microarray capable of detecting all currently described virulence genes and commonly found antimicrobial resistance genes, a survey of environmental E. coli isolates from recreational waters was carried out. A high proportion (29%) of 308 isolates from a beach site in the Great Lakes carried a pathotype set of virulence-related genes, and 14% carried antimicrobial resistance genes, findings consistent with a potential risk for public health. The results also showed that another 8% of the isolates had unusual virulence gene combinations that would be missed by conventional screening. This new application of a DNA microarray to environmental waters will likely have an important impact on public health, epidemiology, and microbial ecology in the future.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1442
Author(s):  
Alyzza Marie B. Calayag ◽  
Kenneth W. Widmer ◽  
Windell L. Rivera

Salmonella enterica is known as one of the most common foodborne pathogens worldwide. While salmonellosis is usually self-limiting, severe infections may require antimicrobial therapy. However, increasing resistance of Salmonella to antimicrobials, particularly fluoroquinolones and cephalosporins, is of utmost concern. The present study aimed to investigate the antimicrobial susceptibility of S. enterica isolated from pork, the major product in Philippine livestock production. Our results show that both the qnrS and the blaTEM antimicrobial resistance genes were present in 61.2% of the isolates. While qnrA (12.9%) and qnrB (39.3%) were found less frequently, co-carriage of blaTEM and one to three qnr subtypes was observed in 45.5% of the isolates. Co-carriage of blaTEM and blaCTX-M was also observed in 3.9% of the isolates. Antimicrobial susceptibility testing revealed that the majority of isolates were non-susceptible to ampicillin and trimethoprim/sulfamethoxazole, and 13.5% of the isolates were multidrug-resistant (MDR). MDR isolates belonged to either O:3,10, O:4, or an unidentified serogroup. High numbers of S. enterica carrying antimicrobial resistance genes (ARG), specifically the presence of isolates co-carrying resistance to both β-lactams and fluoroquinolones, raise a concern on antimicrobial use in the Philippine hog industry and on possible transmission of ARG to other bacteria.


Toxins ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 383 ◽  
Author(s):  
Abdelazeem M. Algammal ◽  
Ali El-Kholy ◽  
Emad M. Riad ◽  
Hossam E. Mohamed ◽  
Mahmoud M. Elhaig ◽  
...  

Calf diarrhea is one of the considerable infectious diseases in calves, which results in tremendous economic losses globally. To determine the prevalence of Shiga-toxigenic E. coli (STEC) and Enterotoxigenic E. coli (ETEC) incriminated in calf diarrhea, with special reference to Shiga- toxins genes (stx1 and stx2) and enterotoxins genes (lt and sta) that govern their pathogenesis, as well as the virulence genes; eaeA (intimin) and f41(fimbrial adhesion), and the screening of their antibiogram and antimicrobial resistance genes; aadB, sul1, and bla-TEM, a total of 274 fecal samples were collected (April 2018–Feb 2019) from diarrheic calves at different farms in El-Sharqia Governorate, Egypt. The bacteriological examination revealed that the prevalence of E. coli in diarrheic calves was 28.8%. The serotyping of the isolated E. coli revealed 7 serogroups; O26, O128, O111, O125, O45, O119 and O91. Furthermore, the Congo red binding test was carried out, where 89.8% of the examined strains (n = 71) were positive. The antibiogram of the isolated strains was investigated; the majority of E. coli serotypes exhibit multidrug resistance (MDR) to four antimicrobial agents; neomycin, gentamycin, streptomycin, and amikacin. Polymerase chain reaction (PCR) was used to detect the prevalence of the virulence genes; stx1, stx2 lt, sta, f41 and eaeA, as well as the antimicrobial resistance genes; aadB, sul1, and bla-TEM. The prevalence of STEC was 20.2% (n = 16), while the prevalence of ETEC was 30.4% (n = 24). Briefly, the Shiga toxins genes; stx1 and stx2, are the most prevalent virulence genes associated with STEC, which are responsible for the pathogenesis of the disease and helped by the intimin gene (eaeA). In addition, the lt gene is the most prevalent enterotoxin gene accompanied by the ETEC strains, either alone or in combination with sta and/or f41 genes. The majority of pathogenic E. coli incriminated in calf diarrhea possesses the aadB resistance gene, followed by the sul1 gene. Enrofloxacin, florfenicol, amoxicillin-clavulanic acid, and ampicillin-sulbactam, are the most effective antimicrobial agents against the isolated STEC and ETEC strains.


2018 ◽  
Vol 12 (05) ◽  
pp. 313-320 ◽  
Author(s):  
Wissal Kalai ◽  
Ilargi Martinez ◽  
Joseba Bikandi ◽  
Lilia Messadi ◽  
Imed Khazri ◽  
...  

Introduction: Salmonella enterica infections are a significant public health concern worldwide, being Salmonella Typhimurium one of the most prevalent serovars. Human salmonellosis is typically associated with the consumption of contaminated foods, such as poultry, eggs and processed meat. The extensive use of antimicrobials in humans and animals has led to an increase in multidrug resistance among Salmonella strains, becoming multidrug-resistant (MDR) strains a major public health concern. Methodology: This study was designed to investigate the antimicrobial susceptibility and the genotypic diversity of Salmonella Typhimurium strains isolated in Tunisia from human and poultry sources from 2009 to 2015. Fortyfive strains were analyzed by disk-diffusion test to determine the antimicrobial susceptibility. The presence of antimicrobial resistance genes was tested by PCR, and genotyping was performed using multiple-locus variable-number tandem repeats analysis (MLVA). Results: About 50% of the strains were resistant to at least 3 antibiotics (multidrug-resistant strains, MDR). The most frequent resistance profile in clinical strains was AMP-TIC-TET-MIN-SXT (n = 7) and TET-MIN in poultry origin strains (n = 7). The MLVA typing grouped the strains in 2 main clusters. Cluster I was mostly formed by human isolates, whereas in cluster II both human and poultry isolates were grouped. Simpson’s diversity index was 0.870 and 0.989 for antimicrobial resistance profiles and MLVA, respectively. Conclusions: Multiresistance is common in Salmonella Typhimurium isolated from human and poultry sources in Tunisia. The genotyping results suggest that some strains isolated from both sources may descend from a common subtype.


2021 ◽  
Author(s):  
Alyzza Marie B. Calayag ◽  
Kenneth W. Widmer ◽  
Windell L. Rivera

Abstract Background: Salmonella enterica is known as one of the most common foodborne pathogens worldwide. While salmonellosis is usually self-limiting, severe infections may require antimicrobial therapy. However, increasing resistance of Salmonella to antimicrobials, particularly fluoroquinolones and cephalosporins, is of utmost concern. The present study aimed to investigate the antimicrobial susceptibility of S. enterica isolated from pork, the major contributor in Philippine livestock production.Results: Our results show that 61.2% of the isolates carried antimicrobial resistance genes qnrS and blaTEM. While qnrA (12.9%) and qnrB (39.3%) were found less frequently, co-carriage of blaTEM and one to three qnr subtypes was observed in 45.5% of the isolates. Co-carriage of blaTEM and blaCTX-M was also observed in 3.9% of the isolates. Antimicrobial susceptibility testing revealed that majority of the isolates were non-susceptible to ampicillin and trimethoprim/sulfamethoxazole, and 13.5% of the isolates were multidrug-resistant.Conclusions: High prevalence rates of S. enterica carrying antimicrobial resistance genes (ARG), specifically the presence of isolates co-carrying resistance to both ß-lactams and fluoroquinolones, raise a concern on antimicrobial use in the Philippine hog industry and on possible transmission of ARG to other bacteria.


2022 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Antonio Lozano-León ◽  
Carlos García-Omil ◽  
Rafael R. Rodríguez-Souto ◽  
Alexandre Lamas ◽  
Alejandro Garrido-Maestu

Salmonella spp. and antimicrobial resistant microorganisms are two of the most important health issues worldwide. In the present study, strains naturally isolated from mussels harvested in Galicia (one of the main production areas in the world), were genetically characterized attending to the presence of virulence and antimicrobial resistance genes. Additionally, the antimicrobial profile was also determined phenotypically. Strains presenting several virulence genes were isolated but lacked all the antimicrobial resistance genes analyzed. The fact that some of these strains presented multidrug resistance, highlighted the possibility of bearing different genes than those analyzed, or resistance based on completely different mechanisms. The current study highlights the importance of constant surveillance in order to improve the safety of foods.


Author(s):  
Quentin J. Leclerc ◽  
Jodi A. Lindsay ◽  
Gwenan M. Knight

Antimicrobial resistance (AMR) is one of the greatest public health challenges we are currently facing. To develop effective interventions against this, it is essential to understand the processes behind the spread of AMR. These are partly dependent on the dynamics of horizontal transfer of resistance genes between bacteria, which can occur by conjugation (direct contact), transformation (uptake from the environment) or transduction (mediated by bacteriophages). Mathematical modelling is a powerful tool to investigate the dynamics of AMR, however its application to study the horizontal transfer of AMR genes is currently unclear. In this systematic review, we searched for mathematical modelling studies which focused on horizontal transfer of AMR genes. We compared their aims and methods using a list of predetermined criteria, and utilized our results to assess the current state of this research field. Of the 43 studies we identified, most focused on the transfer of single genes by conjugation in Escherichia coli in culture, and its impact on the bacterial evolutionary dynamics. Our findings highlight the existence of an important research gap on the dynamics of transformation and transduction, and the overall public health implications of horizontal transfer of AMR genes. To further develop this field and improve our ability to control AMR, it is essential that we clarify the structural complexity required to study the dynamics of horizontal gene transfer, which will require cooperation between microbiologists and modellers.


Author(s):  
Ping Li ◽  
Li Zhan ◽  
Henghui Wang ◽  
Wenjie Gao ◽  
Lei Gao ◽  
...  

Salmonella , a major foodborne pathogen, causes severe gastrointestinal disease in people and animals worldwide. Plasmid-borne mcr-1 , which confers colistin resistance in Salmonella, has significant epidemiological interest for public health safety. Here, we report the first evidence of mcr-1 -mediated colistin resistance in one multidrug-resistant strain,namely 16062 in this study, from 355 Salmonella isolates collected for Jiaxing foodborne pathogen monitoring in Zhejiang Province in 2015–2019. In addition to colistin, 16062 displayed multidrug resistance to various antimicrobials (β-lactams, quinolone, sulfonamide, florfenicol, ampicillin, streptomycin, nalidixic acid, aminoglycoside, and trimethoprim-sulfamethox). The mcr-1 -carrying IncX4 plasmid (p16062-MCR) in this study shares a conserved structure with other mcr -IncX4 plasmids. We found that other antimicrobial-resistance genes ( aac(6')-Ib-cr , aadA1 , aadA2 , aph(3')-Ia , oqxA , oqxB , sul1 , and cmlA1 ) are located on p16062-cmlA, an atypical IncHI2 plasmid, in isolate 16062. This is the first identification of transferable colistin resistance in foodborne Salmonella isolate collected in Jiaxing city, the 5-year monitoring of which revealed limited dissemination. By determining the genetic features of the plasmid vehicle, the characteristics of transferable mcr genes circulating in isolates from Jiaxing are now clearer.


2021 ◽  
Vol 1 (1) ◽  
pp. 17-20
Author(s):  
Ahmed Abd El-Mawgoud ◽  
Azza El-Sawah ◽  
Soad Nasef ◽  
Al-Hussien Dahshan ◽  
Ahmed Ali

In the current study, ten avian pathogenic E. coli (APEC) isolates of the most predominant APEC serogroups isolated from broiler chickens in Egypt were screened for their virulence and antimicrobial resistance genes pattern using PCR. Five selected virulence gene patterns were further investigated for their in-vivo pathogenicity test. Results showed a 100% prevalence of the β-lactams and tetracyclines resistance genes. However, aminoglycoside and quinolone resistance genes were not detected. Also, 80% of the tested isolates harbored mcr-1 gene, colistin resistance gene. In-vivo pathogenic strains consistently harbored the virulence gene pattern of fimH, fimA, papC, iutA, and tsh. Additionally, the tsh gene was consistently detected with lethal APEC isolates in day-old chicks. These results highlighted the high prevalence of antimicrobial and virulence genes in APEC that potentially represent a public health concern. In this study, the virulence genes fimH, fimA, papC, iutA, and tsh were the most common virulence gene patterns associated with pathogenicity in day-old chicks.


Sign in / Sign up

Export Citation Format

Share Document