scholarly journals Fabrication of Non-phospholipid Liposomal Nanocarrier for Sustained-Release of the Fungicide Cymoxanil

2021 ◽  
Vol 8 ◽  
Author(s):  
Zheng Zhang ◽  
Jun Yang ◽  
Qing Yang ◽  
Guangyong Tian ◽  
Zhong-Kai Cui

Liposome nanocarriers can be used to solve problems of pesticide instability, rapid degradation and a short period of efficacy. Cymoxanil with antifungal activity requires an ideal drug loading system due to its degradation issues. In this paper, cholesterol and stearylamine were used to prepare non-phospholipid liposomes (sterosomes) as a pesticide nanocarrier, and were characterized with field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), Fourier-transform infrared (FT-IR) spectrometer, size distribution, and ζ-potential. The results showed sterosomes were successfully loaded with cymoxanil. The loading efficiency and the drug-to-lipid ratio were 92.6% and 0.0761, respectively. Prolonged drug release was obtained for 3 days, improving the short duration of the drug itself. The addition of cymoxanil-loaded sterosomes in culture medium effectively inhibited the growth of yeast cells, which serve as model fungal targets. Sterosomes as nanocarriers significantly improved the stability and efficacy of cymoxanil, thus introducing practical and economically desirable strategies for the preparation of novel pesticide formulations.

2018 ◽  
Author(s):  
Lincy Tom ◽  
Victoria A. Smolenski ◽  
Jerry P. Jasinski ◽  
M.R. Prathapachandra Kurup

The reaction of p-hydroxybenzaldehyde with an equimolar amount of isonicotinic hydrazide afforded two polymorphic and hydrate forms of p-hydroxybenzaldehyde isonicotinichydrazone (HBIH) by varying the experimental reaction conditions. The compounds are fully characterized by means of single crystal and powder diffraction methods, vibrational spectroscopy (FT-IR and Raman), thermal and elemental analysis. The compound crystallizes in three different forms in two different space groups, P21/c (form PA and PB) and Pbca (PC). The Hirshfeld surface analysis shows the differences in the relative contributions of intermolecular interactions to the total Hirshfeld surface area for the HBIH molecules. The calculated pairwise interaction energies (104-116 kJ/mol) can be related to the stability of the crystals. Energy framework analysis identifies the interaction hierarchy and their topology. The geometry and conformation of the three forms are essentially similar which differ only by packing arrangement.


2018 ◽  
Author(s):  
Lincy Tom ◽  
Victoria A. Smolenski ◽  
Jerry P. Jasinski ◽  
M.R. Prathapachandra Kurup

The reaction of p-hydroxybenzaldehyde with an equimolar amount of isonicotinic hydrazide afforded two polymorphic and hydrate forms of p-hydroxybenzaldehyde isonicotinichydrazone (HBIH) by varying the experimental reaction conditions. The compounds are fully characterized by means of single crystal and powder diffraction methods, vibrational spectroscopy (FT-IR and Raman), thermal and elemental analysis. The compound crystallizes in three different forms in two different space groups, P21/c (form PA and PB) and Pbca (PC). The Hirshfeld surface analysis shows the differences in the relative contributions of intermolecular interactions to the total Hirshfeld surface area for the HBIH molecules. The calculated pairwise interaction energies (104-116 kJ/mol) can be related to the stability of the crystals. Energy framework analysis identifies the interaction hierarchy and their topology. The geometry and conformation of the three forms are essentially similar which differ only by packing arrangement.


Author(s):  
G Lacedelli ◽  
L Malavolta ◽  
L Borsato ◽  
G Piotto ◽  
D Nardiello ◽  
...  

Abstract Based on HARPS-N radial velocities (RVs) and TESS photometry, we present a full characterisation of the planetary system orbiting the late G dwarf After the identification of three transiting candidates by TESS, we discovered two additional external planets from RV analysis. RVs cannot confirm the outer TESS transiting candidate, which would also make the system dynamically unstable. We demonstrate that the two transits initially associated with this candidate are instead due to single transits of the two planets discovered using RVs. The four planets orbiting TOI-561 include an ultra-short period (USP) super-Earth (TOI-561 b) with period Pb = 0.45 d, mass Mb = 1.59 ± 0.36 M⊕ and radius Rb = 1.42 ± 0.07 R⊕, and three mini-Neptunes: TOI-561 c, with Pc = 10.78 d, Mc = 5.40 ± 0.98 M⊕, Rc = 2.88 ± 0.09 R⊕; TOI-561 d, with Pd = 25.6 d, Md = 11.9 ± 1.3 M⊕, Rd = 2.53 ± 0.13 R⊕; and TOI-561 e, with Pe = 77.2 d, Me = 16.0 ± 2.3 M⊕, Re = 2.67 ± 0.11 R⊕. Having a density of 3.0 ± 0.8 g cm−3, TOI-561 b is the lowest density USP planet known to date. Our N-body simulations confirm the stability of the system and predict a strong, anti-correlated, long-term transit time variation signal between planets d and e. The unusual density of the inner super-Earth and the dynamical interactions between the outer planets make TOI-561 an interesting follow-up target.


2021 ◽  
Vol 17 (10) ◽  
pp. 1939-1950
Author(s):  
Beibei Lin ◽  
Xuegu Xu ◽  
Xiaobi Zhang ◽  
Yinfei Yu ◽  
Xiaoling Wang

We prepared poly(lactide-co-glycolide) (PLGA) encapsulated with chlorin e6 (Ce6) in an effort to increase the stability and efficiency of photosensitizers for photodynamic therapy (PDT). We determined that Ce6-loaded PLGA nanoparticles (PLGA-Ce6 NPs) had drug-loading efficiency of 5%. The efficiency of encapsulation was 82%, the zeta potential was- 25 mV, and the average diameter was 130 nm. The encapsulation of Ce6 in PLGA nanoparticles showed excellent stability. The nanoparticles exhibited sustained Ce6 release profiles with 50% released at the end of 3 days, whereas free Ce6 showed rapid release within 1 day. Ce6 release patterns were controlled by encapsulation into PLGA. The uptake of PLGA-Ce6 NPs was significantly enhanced by endocytosis in the first 8 hours in the HCT-116 cell line. An intracellular reactive oxygen species assay revealed the enhanced uptake of the nanoparticles. An in vitro anti-tumor activity assay showed that the PLGA-Ce6 NPs exhibited enhanced phototoxicity toward HCT-116 cells and a slightly lower IC50 value in HCT-116 cells than Ce6 solution alone. Exposure of HCT-116 cell spheroids to PLGA-Ce6 NPs penetrated more profoundly and had better phototoxicity than pure drugs. These findings suggest that PLGA-Ce6 NPs might serve as PDT for colorectal cancer.


2020 ◽  
Vol 78 (1) ◽  
Author(s):  
Romain Laurian ◽  
Cécile Jacot-des-Combes ◽  
Fabiola Bastian ◽  
Karine Dementhon ◽  
Pascale Cotton

ABSTRACT During Candida macrophage interactions, phagocytosed yeast cells feed in order to grow, develop hyphae and escape. Through numerous proteomic and transcriptomic studies, two metabolic phases have been described. A shift to a starvation mode is generally identified as early as one-hour post phagocytosis, followed by a glycolytic growth mode after C. albicans escaped from the macrophage. Healthy macrophages contain low amounts of glucose. To determine if this carbon source was sensed and metabolized by the pathogen, we explored the transcription level of a delimited set of key genes expressed in C. albicans cells during phagocytosis by macrophages, at an early stage of the interaction. This analysis was performed using a technical digital droplet PCR approach to quantify reliably the expression of carbon metabolic genes after 30 min of phagocytosis. Our data confirm the technique of digital droplet PCR for the detection of C. albicans transcripts using cells recovered after a short period of phagocytosis. At this stage, carbon metabolism is clearly oriented towards the use of alternative sources. However, the activation of high-affinity glucose transport system suggests that the low amount of glucose initially present in the macrophages is detected by the pathogen.


Author(s):  
Harpreet Kaur Khanuja ◽  
Rajendra Awasthi ◽  
Meenu Mehta ◽  
Saurabh Satija ◽  
Alaa AA Aljabali ◽  
...  

Background: Nanosuspensions are colloidal systems consisting of pure drug and stabilizers, without matrix or lyophilized into a solid matrix. Nanosuspensions improve the solubility of the drug both in the aqueous and organic phases. Nanosuspensions are also known as brick dust molecules, as they increase the dissolution of a system and improve absorption. Methods: Extensive information related to nanosuspensions and its associated patents were collected using PubMed and Google Scholar. Results: Over the last decade nanosuspensions have attracted tremendous interest in pharmaceutical research. It provides unique features including, improved solubility, high drug loading capacity, and passive targeting. These particles are costeffective, simple, and have lesser side effects with minimal dose requirements. However, the stability of nanosuspensions still warrants attention. Conclusion: Nanosuspensions plays a vital role in handling the numerous drug entities with difficult physico-chemical characteristics such as solubility and can further aid with a range of routes that include nasal, transdermal, occular, parenteral, pulmonary etc. This review highlights the relevance of nanosuspensions in achieving safe, effective and targeted drug delivery.


2019 ◽  
Vol 25 ◽  
pp. 260-265
Author(s):  
E. V. Lagunovskaya ◽  
O. I. Zaitseva ◽  
V. A. Lemesh

Aim. Triticale is one of the main grain crops of the Republic of Belarus. Further progress in the selection of this culture involves the accelerated creation of highly productive early ripening varieties resistant to abiotic and biotic factors. The method of induced androgenesis in vitro makes it possible to obtain stable homozygous lines in a short period of time and to eliminate the lengthy process of inbreeding used in classical breeding to fix the desired traits. Methods. The tissue and cell culture methods for plants was used in the study. Results. The influence of the induction medium composition on the efficiency of in vitro induced androgenesis in varieties and lines of hexaploid triticale is assessed. The influence of three types of induction culture medium, the type of phytohormones and the presence or absence of cefotaxime in the medium are analyzed. Results. It has been shown that using the C-17 culture medium supplemented with 2.0 mg/l 2,4-D and 0.5 mg/l kinetin without adding cefotaxime is most effective for the anther triticale cultivation. Keywords: triticale, anther culture, induction nutrient medium, embryoids, calli, regenerant plants, cefotaxime.


2020 ◽  
Author(s):  
Chunying Liu ◽  
Xuejing Lin ◽  
Changqing Su

Extracellular vesicles (EVs) can deliver many types of drugs with their natural source material transport properties, inherent long-term blood circulation capabilities and excellent biocompatibility, and have great potential in the field of drug carrier. Modification of the content and surface of EVs according to the purpose of treatment has become a research focus to improve the drug load and the targeting of EVs. EVs can maximize the stability of the drugs, prevent immune clearance and achieve accurate delivery. Therefore, EVs can be described as \" stealth transport aircrafts \" for drugs. This chapter will respectively introduce the application of natural EVs as cell substitutes in cell therapy and engineered EVs as carriers of nucleic acids, proteins, small molecule drugs and therapeutic viral particles in disease treatment. It will also explain the drug loading and modification strategies of EVs, the source and characteristics of EVs. In addition, the commercialization progress of EVs drugs will be mentioned here, and the problems in their applications will be discussed in conjunction with the application of EVs in the treatment of COVID-19.


2010 ◽  
Vol 4 (2) ◽  
pp. 37-45
Author(s):  
Matheel D. Al-Sabti ◽  
Ahmed A. H. Al-Amiery ◽  
Thorria R. Marzoog ◽  
Yasmien K. Al-Majedy

This study involves the chemical synthesis of the novel ligand 5-(2-diphenylphosphino) phenyl-1,2-dihydro-1,2,4-triazole-3-thione (DPDTT) by the reaction of 2-diphenylphosphino benzoic acid with absolute ethanol that yield ethyl 2-diphenylphosphino benzoate and by cyclization of this compound with thiosemicarbazide, DPDTT will be produced. The chelating complexes of this ligand with Cr(III), Co(II), Ni(II), Cu(II) and Cd(II) were also prepared and studied. The new complexes were characterized by FT-IR, UV/visible spectra, and room temperature magnetic susceptibility. The stability for the prepared complexes was also measured using the density function theory and it was found that the cadmium complex is the most stable and the chromium complex is the least stable. Free ligand and its metal complexes have been tested in vitro against a number of microorganisms, like gram positive bacteria Staphylococcus aureus and gram negative bacteria E. coli, Proteus vulgaris, Pseudomonas and Klebsiella in order to assess their antimicrobial properties. All complexes showed considerable activity against all the studied bacteria.


Sign in / Sign up

Export Citation Format

Share Document