scholarly journals Long Non-Coding RNAs in Epithelial-Mesenchymal Transition of Pancreatic Cancer

2021 ◽  
Vol 8 ◽  
Author(s):  
Kenji Takahashi ◽  
Kenzui Taniue ◽  
Yusuke Ono ◽  
Mikihiro Fujiya ◽  
Yusuke Mizukami ◽  
...  

Non-coding RNAs (ncRNAs), or RNA molecules that do not code for proteins, are generally categorized as either small or long ncRNA (lncRNA) and are involved in the pathogenesis of several diseases including many cancers. Identification of a large number of ncRNAs could help to elucidate previously unknown mechanisms in phenotype regulation. Some ncRNAs are encapsulated by extracellular vesicles (EVs) and transferred to recipient cells to regulate cellular processes, including epigenetic and post-transcriptional regulations. Recent studies have uncovered novel molecular mechanisms and functions of lncRNAs in pancreatic ductal adenocarcinoma (PDAC), one of the most intractable cancers that is highly invasive and metastatic. As the epithelial-mesenchymal transition (EMT) triggers tumor cell invasion and migration, clarification of the roles of lncRNA in EMT and tumor cell stemness would be critical for improving diagnostic and therapeutic approaches in metastatic cancers. This review provides an overview of relevant studies on lncRNA and its involvement with EMT in PDAC. Emerging knowledge offers evidence for the dysregulated expression of lncRNAs and essential insights into the potential contribution of both lncRNAs and EVs in the pathogenesis of PDAC. Future directions and new clinical applications for PDAC are also discussed.

Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831770575 ◽  
Author(s):  
Yuan Shen ◽  
Shanshan Liu ◽  
Hanyu Yuan ◽  
Xiaomin Ying ◽  
Hanjiang Fu ◽  
...  

Long non-coding RNAs have been revealed to play important roles in the progression of hepatocellular carcinoma. However, the detailed mechanisms underlying their activities are not fully understood. Using microarray technology, a number of long non-coding RNAs were previously identified to be aberrantly expressed in hepatocellular carcinoma. In this study, one of these long non-coding RNAs, designated lncRNA-PE (lncRNA promotes epithelial–mesenchymal transition), was further explored to study its expression profile and function. A cohort of human hepatocellular carcinoma tissue samples combined with benign controls and established human hepatocellular carcinoma cell lines were examined for the expression of lncRNA-PE. The biological functions of lncRNA-PE were examined by wound-healing and Transwell assays, which revealed that lncRNA-PE promotes cell invasion and migration. By detecting the level of epithelial–mesenchymal transition markers, lncRNA-PE was revealed to promote epithelial–mesenchymal transition in hepatocellular carcinoma cells. Further study suggested that lncRNA-PE downregulated miR-200a/b by repressing the primary transcript expression, enhanced ZEB1 expression, and promoted epithelial–mesenchymal transition of hepatocellular carcinoma cells. All these data imply that lncRNA-PE might play an important role in hepatocellular carcinoma development via the miR-200a/b-ZEB1 pathway.


2021 ◽  
Author(s):  
Md Zahirul ISLAM KHAN ◽  
Helen Ka-Wai LAW

Abstract BackgroundLong non-coding RNAs (lncRNAs), a class of non-coding RNAs (ncRNAs) associated with diverse biological processes of cells. Over the past decades, cumulating research evidences revealed that abnormal expressions of lncRNAs are associated with colorectal cancer (CRC) initiation, progression, metastasis, and resistance to therapies. Moreover, their usefulness as candidate biomarkers for CRC diagnosis and prognosis are well evident throughout previous literature. In the current study, we examined the role and molecular mechanisms of newly identified lncRNA named RNA associated with metastasis-11 (RAMS11) in CRC development. MethodsThe expression of RAMS11 in CRC cell lines DLD-1, HT-29, HCT-116, and SW480 and colon normal cells CCD-112-CoN were evaluated by quantitative RT-qPCR. The results showed that the RAMS11 is significantly upregulated in CRC cell lines compared to the normal cells. The CCK-8 proliferation assay, colony formation assay, and migration assay were performed to evaluate the biological and physiological functions of RAMS11 in vitro. To decipher the molecular mechanisms of RAMS11 medicated CRC progression, we further performed western blot analysis of the key pathway proteins (e.g., AMPK, AKT, and mTOR).ResultsOur results revealed that higher expression of RAMS11 is associated with increased CRC proliferation, migration, and development of metastasis. Knockdown of RAMS11 induced autophagy, apoptosis along with reduction of epithelial-mesenchymal transition (EMT) suggesting that RAMS11 is involved in CRC progression. The molecular mechanisms of RAMS11 indicated that knockdown of RAMS11 significantly inhibited CRC carcinogenesis through mTOR-dependent autophagy induction. ConclusionsIn sum, our results suggested that RAMS11 is an important oncogene in CRC pathogenesis. Targeting RAMS11 could be a potential therapeutic strategy for CRC management.


2020 ◽  
Vol 21 (12) ◽  
pp. 4473
Author(s):  
Mei Jen Hsieh ◽  
Tai-Jan Chiu ◽  
Yu Chun Lin ◽  
Ching-Chieh Weng ◽  
Yu-Ting Weng ◽  
...  

Pancreatic cancer (PC) is a highly lethal malignancy due to the cancer routinely being diagnosed late and having a limited response to chemotherapy. Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic malignant tumor, representing more than 85% of all pancreatic cancers. In the present study, we characterized the phenotypes of concomitant P53 and APC mutations in pancreatic neoplasms driven by the oncogene KRAS in genetically modified mice (GEMM). In this GEMM setting, APC haploinsufficiency coupled with P53 deletion and KRASG12D activation resulted in an earlier appearance of pancreatic intraepithelial neoplasia (PanIN) lesions and progressed rapidly to highly invasive and metastatic PDAC. Through a microarray analysis of murine PDAC cells derived from our APC-deficient PDAC model, we observed that APC loss leads to upregulated CD34 expression in PDAC. CD34 is a member of a family of single-pass transmembrane proteins and is selectively expressed in hematopoietic progenitor cells, vascular endothelial cells, interstitial precursor cells, and various interstitial tumor cells. However, the functional roles of CD34 in pancreatic cancer remain unclear. Thus, in this study, we explored the mechanisms regarding how CD34 promotes the deterioration of pancreatic malignancy. Our results demonstrated that the increased expression of CD34 induced by APC inactivation promotes the invasion and migration of PDAC cells, which may relate to PDAC metastasis in vivo. Collectively, our study provides first-line evidence to delineate the association between CD34 and the APC/Wnt pathway in PDAC, and reveals the potential roles of CD34 in PDAC progression.


2020 ◽  
Author(s):  
Xiaoning Yang ◽  
Junfeng Ma ◽  
Fanghua Gong ◽  
Yu Liu

Abstract Background Lung cancer is one of the most common causes of cancer-related deaths in the world, and non-small cell lung cancer (NSCLC) accounts for 85% of it. Studies have reported that microRNA-484 (miR-484) plays an important regulatory role in carcinogenesis and cancer development. Methods 25 clinical NSCLC samples were collected for microRNA array. The funvtion of miR-484 was investigated through Transwell and Mitgration assays. The expression levers of epithelial-mesenchymal transition (EMT) related factors were assessed by Western blot. Results miR-484 was up-regulated in tissues from NSCLC patients relative to tumor-adjacent normal tissues. Knocking-down miR-484 expression in A549 cells significantly suppressed tumor cell invasion and migration, suppressed epithelial-mesenchymal transition (EMT) process by increasing the expression of E-cadherin, and decreasing the expression of N-cadherin, vimentin, and MMP2. Upregulation of miR-484 expression in BEAS-2B normal lung epithelial cells significantly promoted tumor cell invasion and migration, decreased E-cadherin expression levels, and increased N-cadherin, vimentin, and MMP2 expression levels Conclusion miR-484 can promote tumor cell invasion and migration in NSCLC and may be a new target for NSCLC treatment.


Author(s):  
Ozal Beylerli ◽  
Ilgiz F. Gareev ◽  
Aferin Beilerli

Cancer metastasis is a multistep process in which cancer cells leave the primary focus, survive in the bloodstream, and colonize in a distant organ. This is the main cause of cancer morbidity and mortality. It is mediated by a multistep process called the metastatic cascade. Initial steps include local invasion and migration, angiogenesis, epithelial-mesenchymal transition (EMF) and intravasation. Non-coding RNAs represent a large part of the transcriptome, with long non-coding RNAs (lncRNAs) constituting a large proportion. The perception of long non-coding RNAs as fragments of RNA and transcriptional noise has been constantly replaced by their role as confirmed targets for various physiological processes in the past few years. A large amount of evidence has revealed their role at all stages of carcinogenesis and in modulating metastasis through regulatory networks. In this review, we focus on the role of long non-coding RNAs as promoters or inhibitors in the main stages of the metastatic cascade, and in particular consider their role in the metastasis of malignant tumors to the brain.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Md Zahirul Islam Khan ◽  
Helen Ka Wai Law

Abstract Background Long non-coding RNAs (lncRNAs), a class of non-coding RNAs (ncRNAs) associated with diverse biological processes of cells. Over the past decades, cumulating research evidences revealed that abnormal expressions of lncRNAs are associated with colorectal cancer (CRC) initiation, progression, metastasis, and resistance to therapies. Moreover, their usefulness as candidate biomarkers for CRC diagnosis and prognosis are well evident throughout previous literature. In the current study, we examined the role and molecular mechanisms of newly identified lncRNA named RNA associated with metastasis-11 (RAMS11) in CRC development. Methods The expression of RAMS11 in CRC cell lines DLD-1, HT-29, HCT-116, and SW480 and colon normal cells CCD-112-CoN were evaluated by quantitative RT-qPCR. The results showed that the RAMS11 is significantly upregulated in CRC cell lines compared to the normal cells. The CCK-8 proliferation assay, colony formation assay, and migration assay were performed to evaluate the biological and physiological functions of RAMS11 in vitro. To decipher the molecular mechanisms of RAMS11 medicated CRC progression, we further performed western blot analysis of the key pathway proteins (e.g., AMPK, AKT, and mTOR). Results Our results revealed that higher expression of RAMS11 is associated with increased CRC proliferation, migration, and development of metastasis. Knockdown of RAMS11 induced autophagy, apoptosis along with reduction of epithelial-mesenchymal transition (EMT) suggesting that RAMS11 is involved in CRC progression. The molecular mechanisms of RAMS11 indicated that knockdown of RAMS11 significantly inhibited CRC carcinogenesis through mTOR-dependent autophagy induction. Conclusions In sum, our results suggested that RAMS11 is an important oncogene in CRC pathogenesis. Targeting RAMS11 could be a potential therapeutic strategy for CRC management.


2021 ◽  
Author(s):  
Md Zahirul ISLAM KHAN ◽  
Helen Ka-Wai LAW

Abstract Background Long non-coding RNAs (lncRNAs), a class of non-coding RNAs (ncRNAs) associated with diverse biological processes of cells. Over the past decades, cumulating research evidences revealed that abnormal expressions of lncRNAs are associated with colorectal cancer (CRC) initiation, progression, metastasis, and resistance to therapies. Moreover, their usefulness as candidate biomarkers for CRC diagnosis and prognosis are well evident throughout previous literature. In the current study, we examined the role and molecular mechanisms of newly identified lncRNA named RNA associated with metastasis-11 (RAMS11) in CRC development. Methods The expression of RAMS11 in CRC cell lines DLD-1, HT-29, HCT-116, and SW480 and colon normal cells CCD-112-CoN were evaluated by quantitative RT-qPCR. The results showed that the RAMS11 is significantly upregulated in CRC cell lines compared to the normal cells. The CCK-8 proliferation assay, colony formation assay, and migration assay were performed to evaluate the biological and physiological functions of RAMS11 in vitro . To decipher the molecular mechanisms of RAMS11 medicated CRC progression, we further performed western blot analysis of the key pathway proteins (e.g., AMPK, AKT, and mTOR). Results Our results revealed that higher expression of RAMS11 is associated with increased CRC proliferation, migration, and development of metastasis. Knockdown of RAMS11 induced autophagy, apoptosis along with reduction of epithelial-mesenchymal transition (EMT) suggesting that RAMS11 is involved in CRC progression. The molecular mechanisms of RAMS11 indicated that knockdown of RAMS11 significantly inhibited CRC carcinogenesis through mTOR-dependent autophagy induction. Conclusions In sum, our results suggested that RAMS11 is an important oncogene in CRC pathogenesis. Targeting RAMS11 could be a potential therapeutic strategy for CRC management.


2021 ◽  
Vol 20 ◽  
pp. 153303382110330
Author(s):  
Chuangui Chen ◽  
Zhao Ma ◽  
Hongjing Jiang

Epithelial-mesenchymal transition (EMT) is a key step in tumor invasion and distant metastasis. Abundant evidence has documented that exosomes can mediate EMT of tumor cells and endow them with the ability of invasion and migration. However, there are few studies focusing on whether EMT can reverse the secretion of exosomes. In this study, 2 esophageal cancer cells (FLO-1 and SK-GT-4) were selected to compare the migration ability and EMT activation, and to further analyze the secretion ability of exosomes of the 2 cell lines. According to the results, inhibited activation of EMT in FLO-1 cells with relatively high migration ability could effectively reduce the secretion of exosomes. Besides, in SK-GT-4 cells, EMT activation induced by TGF-β could promote the secretion of exosomes. FLO-1 cell derived exosomes exhibited a paracrine effect of promoting the migration of SK-GT-4 cells, and the use of EMT inhibitors could weaken this ability. Furthermore, inhibition of EMT could change the relative content of some miRNAs in exosomes, with a particularly significant downregulation in the expression of miR-196-5p, miR-21-5p and miR-194-5p. Significantly, artificial transfection of the 3 miRNAs into exosomes by electroporation resulted in the recovery of migration-promoting effect of exosomes. Subsequent experiments further revealed that the effect of EMT on these miRNAs could be explained by the intracellular transcription level or the specific sorting mechanism of exosomes. To sum up, our study undoubtedly reveals that EMT has a regulatory effect on exosomes in the quantity and contents in esophageal cancer cells. Significantly, findings in our study provide experimental evidence for the interaction of EMT with the secretion and sorting pathway of exosomes, and also give a new direction for the further study of tumor metastasis.


Sign in / Sign up

Export Citation Format

Share Document