scholarly journals A Review on the Role of miR-1246 in the Pathoetiology of Different Cancers

2022 ◽  
Vol 8 ◽  
Author(s):  
Soudeh Ghafouri-Fard ◽  
Tayyebeh Khoshbakht ◽  
Bashdar Mahmud Hussen ◽  
Mohammad Taheri ◽  
Mohammad Samadian

miR-1246 is a microRNA firstly recognized through application of a high throughput sequencing technique in human embryonic stem cells. Subsequent studies have shown the role of this microRNA in the carcinogenesis. miR-1246 has been found to exert oncogenic roles in colorectal, breast, renal, oral, laryngeal, pancreatic and ovarian cancers as well as melanoma and glioma. In lung, cervical and liver cancers, studies have reported contradictory results regarding the role of miR-1246. miR-1246 has been reported to regulate activity of RAF/MEK/ERK, GSK3β, Wnt/β-catenin, JAK/STAT, PI3K/AKT, THBS2/MMP and NOTCH2 pathways. In addition to affecting cell cycle progression and proliferation, miR-1246 can influence stemness and resistance of cancer cells to therapeutics. In the current review, we describe the summary of in vitro and in vivo studies about the influence of miR-1246 in carcinogenesis in addition to studies that measured expression levels of miR-1246 in clinical samples.

2016 ◽  
Vol 62 (2) ◽  
pp. 134-140
Author(s):  
A.V. Smirnova ◽  
V.N. Sukhorukov ◽  
V.P. Karagodin ◽  
A.N. Orekhov

MicroRNAs (miRNAs) are small (~22 nucleotides in length) noncoding RNA sequences regulating gene expression at posttranscriptional level. MicroRNAs bind complementarily to certain mRNA and cause gene silencing. The involvement of miRNAs in the regulation of lipid metabolism, inflammatory response, cell cycle progression and proliferation, oxidative stress, platelet activation, endothelial and vascular smooth muscle cells (VSMC) function, angiogenesis and plaque formation and rapture indicates important roles in the initiation and progression of atherosclerosis. The key role of microRNAs in pathophysiology of cardiovascular diseases (CVDs), including atherosclerosis, was demonstrated in recent studies. Creating antisense oligonucleotides is a novel technique for selective changes in gene expression both in vitro and in vivo. In this review, we draw attention to the role of miRNAs in atherosclerosis progression, using miRNA as the potential biomarkers and targets in the CVDs, as well as possible application of antisense oligonucleotides


2021 ◽  
Author(s):  
Xueqiang Deng ◽  
Xiaowei Fu ◽  
Hong Teng ◽  
Lu Fang ◽  
Bo Liang ◽  
...  

Abstract Background: Pancreatic cancer (PC) is one of the most fatal digestive system cancers. tripartite motif-29 (TRIM29) has been reported as oncogene in several human cancers. However, the precise role and underlying signal cascade of TRIM29 in PC progression remain unclear.Methods: Western blot, qRT-PCR and immunohistochemistry were used to analyze TRIM29 and Yes-associated protein 1 (YAP1) levels. CCK8 assays, EdU assays and flow cytometry were designed to explore the function and potential mechanism of TRIM29 and YAP1 in the proliferation of PC. Next, a nude mouse model of PC was established for validating the roles of TRIM29 and YAP1 in vivo. The relationship among TRIM29 and YAP1 was explored by co-immunoprecipitation and in vitro ubiquitination assay.Results: TRIM29 and YAP1 was significantly upregulated in PC patient samples, and TRIM29 expression was closely related to a malignant phenotype and poorer overall survival (OS) of PC patients. Functional assays revealed that TRIM29 knockdown suppresses cell growth, arrests cell cycle progression and promotes cell apoptosis of PC cells in vivo and in vitro. Furthermore, the rescue experiments demonstrated that TRIM29-induced proliferation is dependent on YAP1 in PC cells. Mechanistically, TRIM29 regulates YAP1 expression by directly binding to YAP1, and reduced its ubiquitination and degradation.Conclusion: Taken together, these results identify a novel mechanism used by PC growth, and provide insight regarding the role of TRIM29 in PC.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1707
Author(s):  
Jee Hoon Song ◽  
Alan H. Tieu ◽  
Yulan Cheng ◽  
Ke Ma ◽  
Venkata S. Akshintala ◽  
...  

Barrett’s esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC). Recently, long noncoding RNAs (lncRNAs) have been identified as key regulators of biological pathways. However, involvement of lncRNAs in the development of BE and EAC has not been well-studied. The aims of the current study were: (1) to study involvement of the lncRNA, miR205HG, in the development of BE and EAC; (2) to clarify the role of miR205HG in in vitro and in vivo experiments; and (3) to investigate the mechanism of miR205HG involving the Hedgehog (Hh) signaling pathway. These experiments revealed that miR205HG was downregulated in EAC vs. normal esophageal epithelia (NE) as well as in EAC cell lines, and its forced overexpression inhibited EAC cell proliferation and cell cycle progression in vitro. Similarly, overexpression of miR205HG inhibited xenograft tumor growth in mice In vivo. Finally, we show that one mechanism of action of miR205HG involves the Hh signaling pathway: miR205HG and Hh expression levels were inversely correlated in both EAC (r = −0.73) and BE (r = −0.83) tissues, and in vitro studies revealed details of Hh signaling inhibition induced by miR205HG. In conclusion, these findings establish that lncRNA miR205HG functions as a tumor suppressor in the development of BE and EAC, at least in part through its effect on the Hh signaling pathway.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xueqiang Deng ◽  
Xiaowei Fu ◽  
Hong Teng ◽  
Lu Fang ◽  
Bo Liang ◽  
...  

Abstract Background Pancreatic cancer (PC) is one of the most fatal digestive system cancers. tripartite motif-29 (TRIM29) has been reported as oncogene in several human cancers. However, the precise role and underlying signal cascade of TRIM29 in PC progression remain unclear. Methods Western blot, qRT-PCR and immunohistochemistry were used to analyze TRIM29 and Yes-associated protein 1 (YAP1) levels. CCK8 assays, EdU assays and flow cytometry were designed to explore the function and potential mechanism of TRIM29 and YAP1 in the proliferation of PC. Next, a nude mouse model of PC was established for validating the roles of TRIM29 and YAP1 in vivo. The relationship among TRIM29 and YAP1 was explored by co-immunoprecipitation and in vitro ubiquitination assay. Results TRIM29 and YAP1 was significantly upregulated in PC patient samples, and TRIM29 expression was closely related to a malignant phenotype and poorer overall survival (OS) of PC patients. Functional assays revealed that TRIM29 knockdown suppresses cell growth, arrests cell cycle progression and promotes cell apoptosis of PC cells in vivo and in vitro. Furthermore, the rescue experiments demonstrated that TRIM29-induced proliferation is dependent on YAP1 in PC cells. Mechanistically, TRIM29 regulates YAP1 expression by directly binding to YAP1, and reduced its ubiquitination and degradation. Conclusion Taken together, these results identify a novel mechanism used by PC growth, and provide insight regarding the role of TRIM29 in PC.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Ritu Chaudhary ◽  
Bruna R. Muys ◽  
Ioannis Grammatikakis ◽  
Supriyo De ◽  
Kotb Abdelmohsen ◽  
...  

ABSTRACT Circular RNAs (circRNAs) are a class of noncoding RNAs produced by a noncanonical form of alternative splicing called back-splicing. To investigate a potential role of circRNAs in the p53 pathway, we analyzed RNA sequencing (RNA-seq) data from colorectal cancer cell lines (HCT116, RKO, and SW48) that were untreated or treated with a DNA-damaging agent. Surprisingly, unlike the strong p53-dependent induction of hundreds of p53-induced mRNAs upon DNA damage, only a few circRNAs were upregulated from p53-induced genes. circ-MDM2, an annotated circRNA from the MDM2 locus, was one of the handful of circRNAs that originated from a p53-induced gene. Given the central role of MDM2 in suppressing p53 protein levels and p53 activity, we investigated the function of circ-MDM2. Knocking down circ-MDM2 with small interfering RNAs (siRNAs) that targeted circ-MDM2 did not alter MDM2 mRNA or MDM2 protein levels but resulted in increased basal p53 levels and growth defects in vitro and in vivo. Consistent with these results, transcriptome profiling showed increased expression of several direct p53 targets, reduced retinoblastoma protein (Rb) phosphorylation, and defects in G1-S progression upon silencing circ-MDM2. Our results on the initial characterization of circ-MDM2 identify a new player from the MDM2 locus that suppresses p53 levels and cell cycle progression.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yunsook Min ◽  
Jennifer M. Frost ◽  
Yeonhee Choi

Abstract Sexual reproduction in flowering plants is distinct from that in animals since gametogenesis requires production of haploid spores, which divide and differentiate into specialised gametophyte structures. Anti-Silencing Function 1 (ASF1) is a histone H3/H4 chaperone involved in chromatin remodeling during cell division, which we have found plays a critical role in gametophyte development in Arabidopsis thaliana. Using mutant alleles for the two ASF1 homologs, asf1a and asf1b, we show that ASF1 is required for successful development of gametophytes and acquisition of fertilisation competency. On the female side, reproductive failure is caused by aberrant development of ovules, leading to gamete degeneration. On the male side, we show both in vitro and in vivo that asf1 mutant pollen tube growth is stunted, limiting fertilisation to ovules nearest the stigma. Consistent with ASF1 importance in gametogenesis, we show that ASF1A and ASF1B are expressed throughout female and male gametogenesis. We show that the gametogenesis defects can be corrected by ASF1A and ASF1B transgenes, and that ASF1A and ASF1B act redundantly. Thus, in contrast to the role of ASF1 in sporophytic cell cycle progression, our data indicate that during reproduction, ASF1 is required for the precise nuclei differentiation necessary for gametophyte maturation and fertilisation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jacob A Zahm ◽  
Michael G Stewart ◽  
Joseph S Carrier ◽  
Stephen C Harrison ◽  
Matthew P Miller

Chromosome segregation during cell division requires engagement of kinetochores of sister chromatids with microtubules emanating from opposite poles. As the corresponding microtubules shorten, these ‘bioriented’ sister kinetochores experience tension-dependent stabilization of microtubule attachments. The yeast XMAP215 family member and microtubule polymerase, Stu2, associates with kinetochores and contributes to tension-dependent stabilization in vitro. We show here that a C-terminal segment of Stu2 binds the four-way junction of the Ndc80 complex (Ndc80c) and that residues conserved both in yeast Stu2 orthologs and in their metazoan counterparts make specific contacts with Ndc80 and Spc24. Mutations that perturb this interaction prevent association of Stu2 with kinetochores, impair cell viability, produce biorientation defects, and delay cell cycle progression. Ectopic tethering of the mutant Stu2 species to the Ndc80c junction restores wild-type function in vivo. These findings show that the role of Stu2 in tension-sensing depends on its association with kinetochores by binding with Ndc80c.


Author(s):  
Jun-Xian Du ◽  
Yi-Hong Luo ◽  
Si-Jia Zhang ◽  
Biao Wang ◽  
Cong Chen ◽  
...  

Abstract Background Intensive evidence has highlighted the effect of aberrant alternative splicing (AS) events on cancer progression when triggered by dysregulation of the SR protein family. Nonetheless, the underlying mechanism in breast cancer (BRCA) remains elusive. Here we sought to explore the molecular function of SRSF1 and identify the key AS events regulated by SRSF1 in BRCA. Methods We conducted a comprehensive analysis of the expression and clinical correlation of SRSF1 in BRCA based on the TCGA dataset, Metabric database and clinical tissue samples. Functional analysis of SRSF1 in BRCA was conducted in vitro and in vivo. SRSF1-mediated AS events and their binding motifs were identified by RNA-seq, RNA immunoprecipitation-PCR (RIP-PCR) and in vivo crosslinking followed by immunoprecipitation (CLIP), which was further validated by the minigene reporter assay. PTPMT1 exon 3 (E3) AS was identified to partially mediate the oncogenic role of SRSF1 by the P-AKT/C-MYC axis. Finally, the expression and clinical significance of these AS events were validated in clinical samples and using the TCGA database. Results SRSF1 expression was consistently upregulated in BRCA samples, positively associated with tumor grade and the Ki-67 index, and correlated with poor prognosis in a hormone receptor-positive (HR+) cohort, which facilitated proliferation, cell migration and inhibited apoptosis in vitro and in vivo. We identified SRSF1-mediated AS events and discovered the SRSF1 binding motif in the regulation of splice switching of PTPMT1. Furthermore, PTPMT1 splice switching was regulated by SRSF1 by binding directly to its motif in E3 which partially mediated the oncogenic role of SRSF1 by the AKT/C-MYC axis. Additionally, PTPMT1 splice switching was validated in tissue samples of BRCA patients and using the TCGA database. The high-risk group, identified by AS of PTPMT1 and expression of SRSF1, possessed poorer prognosis in the stage I/II TCGA BRCA cohort. Conclusions SRSF1 exerts oncogenic roles in BRCA partially by regulating the AS of PTPMT1, which could be a therapeutic target candidate in BRCA and a prognostic factor in HR+ BRCA patient.


Author(s):  
Xiong Shu ◽  
Pan-Pan Zhan ◽  
Li-Xin Sun ◽  
Long Yu ◽  
Jun Liu ◽  
...  

BackgroundFocusing on antiangiogenesis may provide promising choices for treatment of gastric cancer (GC). This study aimed to investigate the mechanistic role of BCAT1 in the pathogenesis of GC, particularly in angiogenesis.MethodsBioinformatics and clinical samples analysis were used to investigate the expression and potential mechanism of BCAT1 in GC. BGC823 cells with BCAT1 overexpression or silencing were induced by lentiviral transduction. Cell phenotypes and angiogenesis were evaluated. The relevant proteins were quantized by Western blotting, immunohistochemistry, or immunofluorescence. Xenograft models were constructed to confirm the role of BCAT1 in vivo.ResultsBCAT1 was overexpressed in GC patients and associated with lower survival. BCAT1 expression was correlated with proliferation-, invasion-, or angiogenesis-related markers expression and pathways. Silencing BCAT1 expression suppressed cell viability, colony formation, cycle progression, invasion, and angiogenesis of BGC823 cells, as well as the tumor growth of xenograft models, whereas overexpressing BCAT1 had the opposite results both in vitro and in vivo. Bioinformatics analysis and Western blotting demonstrated that BCAT1 activated the PI3K/AKT/mTOR pathway. The addition of LY294002 reversed the tumor growth induced by BCAT1 overexpression, further verifying this mechanism.ConclusionBCAT1 might act as an oncogene by facilitating proliferation, invasion, and angiogenesis through activation of the PI3K/AKT/mTOR pathway. This finding could aid the optimization of antiangiogenesis strategies.


Sign in / Sign up

Export Citation Format

Share Document