scholarly journals Decoding Cancer Variants of Unknown Significance for Helicase–Nuclease–RPA Complexes Orchestrating DNA Repair During Transcription and Replication

2021 ◽  
Vol 8 ◽  
Author(s):  
Susan E. Tsutakawa ◽  
Albino Bacolla ◽  
Panagiotis Katsonis ◽  
Amer Bralić ◽  
Samir M. Hamdan ◽  
...  

All tumors have DNA mutations, and a predictive understanding of those mutations could inform clinical treatments. However, 40% of the mutations are variants of unknown significance (VUS), with the challenge being to objectively predict whether a VUS is pathogenic and supports the tumor or whether it is benign. To objectively decode VUS, we mapped cancer sequence data and evolutionary trace (ET) scores onto crystallography and cryo-electron microscopy structures with variant impacts quantitated by evolutionary action (EA) measures. As tumors depend on helicases and nucleases to deal with transcription/replication stress, we targeted helicase–nuclease–RPA complexes: (1) XPB-XPD (within TFIIH), XPF-ERCC1, XPG, and RPA for transcription and nucleotide excision repair pathways and (2) BLM, EXO5, and RPA plus DNA2 for stalled replication fork restart. As validation, EA scoring predicts severe effects for most disease mutations, but disease mutants with low ET scores not only are likely destabilizing but also disrupt sophisticated allosteric mechanisms. For sites of disease mutations and VUS predicted to be severe, we found strong co-localization to ordered regions. Rare discrepancies highlighted the different survival requirements between disease and tumor mutations, as well as the value of examining proteins within complexes. In a genome-wide analysis of 33 cancer types, we found correlation between the number of mutations in each tumor and which pathways or functional processes in which the mutations occur, revealing different mutagenic routes to tumorigenesis. We also found upregulation of ancient genes including BLM, which supports a non-random and concerted cancer process: reversion to a unicellular, proliferation-uncontrolled, status by breaking multicellular constraints on cell division. Together, these genes and global analyses challenge the binary “driver” and “passenger” mutation paradigm, support a gradient impact as revealed by EA scoring from moderate to severe at a single gene level, and indicate reduced regulation as well as activity. The objective quantitative assessment of VUS scoring and gene overexpression in the context of functional interactions and pathways provides insights for biology, oncology, and precision medicine.

2017 ◽  
Vol 20 (3) ◽  
pp. 245-250 ◽  
Author(s):  
Jane E Armes ◽  
Lisa Squires ◽  
Rohan Lourie ◽  
Mark Williams ◽  
Renee Gallagher ◽  
...  

Ventricular noncompaction cardiomyopathy is a rare form of congenital cardiomyopathy with increasing evidence of genetic etiology, especially when presenting in childhood. Fetal presentation is rare. We describe a case of fetal hydrops, presenting at 24 weeks gestation and leading to intrapartum death at 26 weeks gestation. Autopsy examination revealed characteristic features of left ventricular noncompaction. A genetic analysis identified a constellation of variants of unknown significance in MYH6, TNNC1, and MYBPC3, genes known to be important in sarcomeric function. Additionally, the variant in MYBPC3 was homozygous. While this case did not demonstrate a conventional single-gene mutation as the cause of the ventricular noncompaction, a broader genomic investigation revealed several variants in sarcomeric genes which may act synergistically to impact cardiac function.


2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 126-126
Author(s):  
Eva Chao ◽  
Qi Xu ◽  
Anna Capasso ◽  
S. Gail Eckhardt ◽  
Jeanne Kowalski

126 Background: In microsatellite stable (MSS) colorectal cancer (CRC) cases, frequent amplifications in 13q and 20q regions have been reported with limited understanding of their potential role for prognosis and treatment. Based on an internal research molecular tumor board case analysis of a KRAS WT, MSS left-sided (LS), metastatic CRC patient, we noted 50% of the 11 listed variants of unknown significance were on 20q. This study aims to investigate the potential prognostic role for gain of 20q chromosomal regions relative to other chromosomal imbalances using a retrospective cohort. Methods: We performed a genome-wide CN cluster analysis using the TCGA data with resulting patient clusters compared based on Kaplan-Meier estimated disease-free interval (DFI) in months (mos) using a log-rank. We examined associations between CN-derived clusters and CRC phenotypes. Results: Using TCGA data, we identified four CN-derived patient clusters of which two had significantly different DFI’s. One longer DFI cluster (n = 83; median DFI = 28mos) was defined by a signature of copy neutral genes along Chr8p and 18q regions. The shorter DFI cluster (n = 46; median DFI = 20mos) was defined by a signature of Chr8p and 18q regions of loss. The two clusters significantly differed in terms of site (85% right-sided in the shorter vs. 85% LS in the longer DFI cluster) and MS status (81% MSS in the shorter vs. 72% MSI in the longer DFI cluster) with no significant differences in age (mean of 70 years at diagnosis) and KRAS status (around 50% WT) between clusters. The shorter DFI was able to be further differentiated based on gain of chromosomal regions 20q (n = 26; median DFI = 24mos) and 13q (n = 20; median DFI = 18mos). No significant differences in mean age, tumor stage, site, and MS status between the shorter DFI subgroups were noted. Enriched pathways in the Chr20q gain sub-cluster include cell differentiation (Hippo, Rap1, VEGF), whereas metabolic signaling pathways via AGE-RAGE and AMPK, as well as cell growth and malignant transformation via RAS are enriched in the Chr13q gain sub-cluster. Conclusions: Clinical sequencing is able to identify regions of gain in Chr20q and Chr13q as part of VUS’s. Gain of Chr20q has been reported with better survival in mCRC patients. Gain of chromosomal region 20q and loss of 18q has been reported to discriminate between Lynch Syndrome and familial colorectal cancer. Herein, we show that gain of the 20q region with 18q and 8p regions of loss is associated with shorter DFI and gain of 13q region with loss of 8p even worse prognosis.


2020 ◽  
pp. jbc.RA120.014455
Author(s):  
Aleksandr V. Popov ◽  
Anton V. Endutkin ◽  
Darya D. Yatsenko ◽  
Anna V. Yudkina ◽  
Alexander E. Barmatov ◽  
...  

DNA of living cells is always exposed to damaging factors. To counteract the consequences of DNA lesions, cells have evolved several DNA repair systems, among which base excision repair is one of the most important. Many currently used antitumor drugs act by damaging DNA, and DNA repair often interferes with chemo- and radiotherapy in cancer cells. Tumors are usually extremely genetically heterogeneous, often bearing mutations in DNA repair genes. Thus, knowledge of the functionality of cancer-related variants of proteins involved in DNA damage response and repair is of great interest for personalization of cancer therapy. Although computational methods to predict the variant functionality have attracted much attention, at present they are mostly based on sequence conservation and make little use of modern capabilities in computational analysis of 3D protein structure. We have used molecular dynamics (MD) to model the structures of 20 clinically observed variants of a DNA repair enzyme, 8-oxoguanine-DNA glycosylase (OGG1). In parallel, we have experimentally characterized the activity, thermostability and DNA binding in a subset of these mutant proteins. Among the analyzed variants of OGG1, three (I145M, G202C, and V267M) were significantly functionally impaired and were successfully predicted by MD. Alone or in combination with sequence-based methods, MD may be an important functional prediction tool for cancer-related protein variants of unknown significance.


Author(s):  
Lina Kloub ◽  
Sean Gosselin ◽  
Matthew Fullmer ◽  
Joerg Graf ◽  
J Peter Gogarten ◽  
...  

Abstract Horizontal gene transfer (HGT) is central to prokaryotic evolution. However, little is known about the “scale” of individual HGT events. In this work, we introduce the first computational framework to help answer the following fundamental question: How often does more than one gene get horizontally transferred in a single HGT event? Our method, called HoMer, uses phylogenetic reconciliation to infer single-gene HGT events across a given set of species/strains, employs several techniques to account for inference error and uncertainty, combines that information with gene order information from extant genomes, and uses statistical analysis to identify candidate horizontal multi-gene transfers (HMGTs) in both extant and ancestral species/strains. HoMer is highly scalable and can be easily used to infer HMGTs across hundreds of genomes. We apply HoMer to a genome-scale dataset of over 22000 gene families from 103 Aeromonas genomes and identify a large number of plausible HMGTs of various scales at both small and large phylogenetic distances. Analysis of these HMGTs reveals interesting relationships between gene function, phylogenetic distance, and frequency of multi-gene transfer. Among other insights, we find that (i) the observed relative frequency of HMGT increases as divergence between genomes increases, (ii) HMGTs often have conserved gene functions, and (iii) rare genes are frequently acquired through HMGT. We also analyze in detail HMGTs involving the zonula occludens toxin and type III secretion systems. By enabling the systematic inference of HMGTs on a large scale, HoMer will facilitate a more accurate and more complete understanding of HGT and microbial evolution.


Author(s):  
Bian Li ◽  
Jeffrey L. Mendenhall ◽  
Brett M. Kroncke ◽  
Keenan C. Taylor ◽  
Hui Huang ◽  
...  

2017 ◽  
Vol 3 (5) ◽  
pp. e177 ◽  
Author(s):  
Javier Ruiz-Martínez ◽  
Luis J. Azcona ◽  
Alberto Bergareche ◽  
Jose F. Martí-Massó ◽  
Coro Paisán-Ruiz

Objective:Despite the enormous advancements made in deciphering the genetic architecture of Parkinson disease (PD), the majority of PD is idiopathic, with single gene mutations explaining only a small proportion of the cases.Methods:In this study, we clinically evaluated 2 unrelated Spanish families diagnosed with PD, in which known PD genes were previously excluded, and performed whole-exome sequencing analyses in affected individuals for disease gene identification.Results:Patients were diagnosed with typical PD without relevant distinctive symptoms. Two different novel mutations were identified in the CSMD1 gene. The CSMD1 gene, which encodes a complement control protein that is known to participate in the complement activation and inflammation in the developing CNS, was previously shown to be associated with the risk of PD in a genome-wide association study.Conclusions:We conclude that the CSMD1 mutations identified in this study might be responsible for the PD phenotype observed in our examined patients. This, along with previous reported studies, may suggest the complement pathway as an important therapeutic target for PD and other neurodegenerative diseases.


1982 ◽  
Vol 39 (1) ◽  
pp. 1-30 ◽  
Author(s):  
George L. Gabor Miklos ◽  
Amanda Clare Gill

SummaryThe nucleotide sequence data from highly repeated DNAs of inverte-brates and mammals are summarized and briefly discussed. Very similar conclusions can be drawn from the two data bases. Sequence complexities can vary from 2 bp to at least 359 bp in invertebrates and from 3 bp to at least 2350 bp in mammals. The larger sequences may or may not exhibit a substructure. Significant sequence variation occurs for any given repeated array within a species, but the sources of this heterogeneity have not been systematically partitioned. The types of alterations in a basic repeating unit can involve base changes as well as deletions or additions which can vary from 1 bp to at least 98 bp in length. These changes indicate that sequence per se is unlikely to be under significant biological constraints and may sensibly be examined by analogy to Kimura's neutral theory for allelic variation. It is not possible with the present evidence to discriminate between the roles of neutral and selective mechanisms in the evolution of highly repeated DNA.Tandemly repeated arrays are constantly subjected to cycles of amplification and deletion by mechanisms for which the available data stem largely from ribosomal genes. It is a matter of conjecture whether the solutions to the mechanistic puzzles involved in amplification or rapid redeployment of satellite sequences throughout a genome will necessarily give any insight into biological functions.The lack of significant somatic effects when the satellite DNA content of a genome is significantly perturbed indicates that the hunt for specific functions at the cellular level is unlikely to prove profitable.The presence or in some cases the amount of satellite DNA on a chromosome, however, can have significant effects in the germ line. There the data show that localized condensed chromatin, rich in satellite DNA, can have the effect of rendering adjacent euchromatic regions rec−, or of altering levels of recombination on different chromosomes. No data stemming from natural populations however are yet available to tell us if these effects are of adaptive or evolutionary significance.


Parasitology ◽  
2009 ◽  
Vol 136 (5) ◽  
pp. 469-485 ◽  
Author(s):  
A. S. TAFT ◽  
J. J. VERMEIRE ◽  
J. BERNIER ◽  
S. R. BIRKELAND ◽  
M. J. CIPRIANO ◽  
...  

SUMMARYInfection of the snail,Biomphalaria glabrata, by the free-swimming miracidial stage of the human blood fluke,Schistosoma mansoni, and its subsequent development to the parasitic sporocyst stage is critical to establishment of viable infections and continued human transmission. We performed a genome-wide expression analysis of theS. mansonimiracidia and developing sporocyst using Long Serial Analysis of Gene Expression (LongSAGE). Five cDNA libraries were constructed from miracidia andin vitrocultured 6- and 20-day-old sporocysts maintained in sporocyst medium (SM) or in SM conditioned by previous cultivation with cells of theB. glabrataembryonic (Bge) cell line. We generated 21 440 SAGE tags and mapped 13 381 to theS. mansonigene predictions (v4.0e) either by estimating theoretical 3′ UTR lengths or using existing 3′ EST sequence data. Overall, 432 transcripts were found to be differentially expressed amongst all 5 libraries. In total, 172 tags were differentially expressed between miracidia and 6-day conditioned sporocysts and 152 were differentially expressed between miracidia and 6-day unconditioned sporocysts. In addition, 53 and 45 tags, respectively, were differentially expressed in 6-day and 20-day cultured sporocysts, due to the effects of exposure to Bge cell-conditioned medium.


2006 ◽  
Vol 12 (6) ◽  
pp. 723-730 ◽  
Author(s):  
S Haghighi ◽  
O Andersen ◽  
S Nilsson ◽  
L Rydberg ◽  
J Wahlström

We studied two extended families in which not only multiple sclerosis (MS) segregates, but also approximately 18% of the cerebrospinal fluid (CSF) investigated blood relatives have ‘MS immunopathic trait’, an oligoclonal CSF immunopathy similar to that seen in MS, but with no neurological symptoms. Both families fit a genetic model for autosomal dominant inheritance for MS immunopathic trait, although with reduced penetrance in family A. In order to identify genetic factors of importance for the development of MS immunopathic trait, we performed a genome scan using the CHLC/Weber Screening Set (ver 6A), with 285 successful markers, to test the hypothesis that a single gene is causing the MS immunopathic trait in these families. Using a parametric method, we identified regions with suggestive linkage at chromosome 6q12 with a LOD-score of 2.4, putative linkage with LOD-score 1.5 at chromosome 6p21 (HLA region), putative linkage at chromosome 12q24 with a LOD-score of 1.7 and suggestive linkage at chromosome 19q13.2 with a LOD-score of 1.8. The LOD-score at chromosome 19q13.2 increased to 2.2 when only family A was analysed. In family A, all MS patients and two of five individuals with MS immunopathic trait had HLA DRB1*(15) and in family B, all blood relatives had the rare HLA type DRB1*0103, which is associated with other autoimmune diseases. We suggest that DRB1*0103 is a necessary but not sufficient condition for the susceptibility for MS immunopathic trait in this family.


Sign in / Sign up

Export Citation Format

Share Document