scholarly journals Emotional, Psychological, and Cognitive Changes Throughout the COVID-19 Pandemic in Italy: Is There an Advantage of Being an Older Adult?

2021 ◽  
Vol 13 ◽  
Author(s):  
Elena Carbone ◽  
Rocco Palumbo ◽  
Enrico Sella ◽  
Graziana Lenti ◽  
Alberto Di Domenico ◽  
...  

Introduction: The study examined age-related differences between young and older adults’ emotional and psychological experience as well as cognitive functioning throughout different phases of the COVID-19 pandemic in Italy.Materials and Methods: Participants were interviewed by phone when confined at home during the national lockdown (T1-May 2020; N = 138 young adults; N = 119 older adults) and after the first wave of contagions, when restrictions were discarded (T2-September 2020; N = 52 young adults; N = 59 older adults). A sub-sample also participated in a third assessment (T3-December 2020). Participants completed questionnaires assessing their emotional and psychological functioning (i.e., positive and negative affect, perceived social and emotional loneliness, resilience) along with memory tasks (Backward Digit Span task and words list recall).Results: Although individuals reported less positive and more negative emotions during the lockdown than at T2, results showed that older adults displayed overall fewer negative emotions and greater resilience than young adults. The latter were those who reported feeling more emotionally lonely when compared to their older counterpart during the lockdown than afterward. Older adults’ advantage in emotional and psychological functioning was also confirmed 7 months after the national lockdown. Only age-related differences in favor of young adults for the memory tasks were found. The measures of interest were also susceptible to mood and/or concerns of COVID-19 effects.Discussion: These findings further highlight the age-related advantage of older adults managing the emotional and psychological experience even when facing an unexpected, prolonged, and unpredictable, stressful life event such as the COVID-19 pandemic.

Author(s):  
Edmundo A. Sierra ◽  
Arthur D. Fisk ◽  
Wendy A. Rogers

Video instruction is an effective support for audio instruction of visuospatial tasks; but how is effectiveness of this type of instruction moderated? We investigated the effects of age-related cognitive changes, audio versus audio-plus-video instructions, differential working memory instruction demands, and differential task difficulty on assembly task performance. Forty-eight young adults and 48 older adults completed an assembly task where accuracy, use of additional time, repetition of steps, and subjective mental workload were measured. Results indicated that participants receiving audio plus video instruction benefited most as task difficulty increased. Older adults performed more poorly compared to young adults; however, the findings indicate that video-based instruction was beneficial for both young and older adults for this class of task. Results are discussed from a training perspective in general and as they relate to telemedicine specifically. Guidelines for applying the correct instructional media as a function of the instructional demands are discussed.


2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana S. Cortes ◽  
Christina Tornberg ◽  
Tanja Bänziger ◽  
Hillary Anger Elfenbein ◽  
Håkan Fischer ◽  
...  

AbstractAge-related differences in emotion recognition have predominantly been investigated using static pictures of facial expressions, and positive emotions beyond happiness have rarely been included. The current study instead used dynamic facial and vocal stimuli, and included a wider than usual range of positive emotions. In Task 1, younger and older adults were tested for their abilities to recognize 12 emotions from brief video recordings presented in visual, auditory, and multimodal blocks. Task 2 assessed recognition of 18 emotions conveyed by non-linguistic vocalizations (e.g., laughter, sobs, and sighs). Results from both tasks showed that younger adults had significantly higher overall recognition rates than older adults. In Task 1, significant group differences (younger > older) were only observed for the auditory block (across all emotions), and for expressions of anger, irritation, and relief (across all presentation blocks). In Task 2, significant group differences were observed for 6 out of 9 positive, and 8 out of 9 negative emotions. Overall, results indicate that recognition of both positive and negative emotions show age-related differences. This suggests that the age-related positivity effect in emotion recognition may become less evident when dynamic emotional stimuli are used and happiness is not the only positive emotion under study.


2004 ◽  
Vol 47 (1) ◽  
pp. 33-45 ◽  
Author(s):  
Stephanie K. Daniels ◽  
David M. Corey ◽  
Leslie D. Hadskey ◽  
Calli Legendre ◽  
Daniel H. Priestly ◽  
...  

Recent research has revealed differences between isolated and sequential swallowing in healthy young adults; however, the influence of normal aging on sequential swallowing has not been studied. Thus, the purpose of this investigation was to examine the effects of normal aging on deglutition during sequential straw drinking. Videofluoroscopic samples of two 10-s straw drinking trials were obtained for 20 healthy young men (age 29±3 years) and 18 healthy older men (age 69±7 years). Hyolaryngeal complex (HLC) movement patterns, leading edge of the bolus location at swallow onset, and occurrences of airway invasion were determined. Two HLC patterns were identified: (a) HLC lowering with the epiglottis returned to upright between swallows and (b) partially maintained HLC elevation with the epiglottis inverted between swallows. The bolus was frequently in the hypopharynx at swallow onset. Strong associations were identified between age and HLC pattern, age and leading edge of the bolus location, and HLC pattern and leading edge location. Laryngeal penetration was uncommon overall; however, it occurred more frequently in the older adults than in the young adults. A significant relation was identified between age and the average Penetration-Aspiration Scale score. Laryngeal penetration was associated with both HLC movement patterns and hypopharyngeal bolus location, particularly in older adults. Results indicate that subtle age-related differences are evident in healthy young and older adults with sequential straw drinking. These data suggest that specific inherent swallowing patterns may increase the risk of laryngeal penetration with normal aging.


2019 ◽  
Vol 5 (s2) ◽  
Author(s):  
Daniel Müller-Feldmeth ◽  
Katharina Ahnefeld ◽  
Adriana Hanulíková

AbstractWe used self-paced reading to examine whether stereotypical associations of verbs with women or men as prototypical agents (e.g. the craftsman knits a sweater) are activated during sentence processing in dementia patients and healthy older adults. Effects of stereotypical knowledge on language processing have frequently been observed in young adults, but little is known about age-related changes in the activation and integration of stereotypical information. While syntactic processing may remain intact, semantic capacities are often affected in dementia. Since inferences based on gender stereotypes draw on social and world knowledge, access to stereotype information may also be affected in dementia patients. Results from dementia patients (n = 9, average age 86.6) and healthy older adults (n = 14, average age 79.5) showed slower reading times and less accuracy in comprehension scores for dementia patients compared to the control group. While activation of stereotypical associations of verbs was visible in both groups, they differed with respect to the time-course of processing. The effect of stereotypes on comprehension accuracy was visible for healthy adults only. The evidence from reading times suggests that older adults with and without dementia engage stereotypical inferences during reading, which is in line with research on young adults.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6051 ◽  
Author(s):  
Brooke Brady ◽  
Ian I. Kneebone ◽  
Nida Denson ◽  
Phoebe E. Bailey

The process model of emotion regulation (ER) is based on stages in the emotion generative process at which regulation may occur. This meta-analysis examines age-related differences in the subjective, behavioral, and physiological outcomes of instructed ER strategies that may be initiated after an emotional event has occurred; attentional deployment, cognitive change, and response modulation. Within-process strategy, stimulus type, and valence were also tested as potential moderators of the effect of age on ER. A systematic search of the literature identified 156 relevant comparisons from 11 studies. Few age-related differences were found. In our analysis of the subjective outcome of response modulation strategies, young adults used expressive enhancement successfully (g = 0.48), but not expressive suppression (g = 0.04). Response modulation strategies had a small positive effect among older adults, and enhancement vs suppression did not moderate this success (g = 0.31 and g = 0.10, respectively). Young adults effectively used response modulation to regulate subjective emotion in response to pictures (g = 0.41) but not films (g = 0.01). Older adults were able to regulate in response to both pictures (g = 0.26) and films (g = 0.11). Interestingly, both age groups effectively used detached reappraisal, but not positive reappraisal to regulate emotional behavior. We conclude that, in line with well-established theories of socioemotional aging, there is a lack of evidence for age differences in the effects of instructed ER strategies, with some moderators suggesting more consistent effectiveness for older compared to younger adults.


2017 ◽  
Author(s):  
Shruti Dave ◽  
Trevor A. Brothers ◽  
Matthew J. Traxler ◽  
Fernanda Ferreira ◽  
John M. Henderson ◽  
...  

Young adults show consistent neural benefits of predictable contexts when processing upcoming words, but these benefits are less clear-cut in older adults. Here we conduct two ERP experiments to examine whether aging uniquely affects neural correlates of prediction accuracy, as compared to contextual support independent of accuracy. In Experiment 1, readers were asked to predict sentence-final words and self-report prediction accuracy, allowing for separation of ERP effects of accurate prediction and contextual support. While N250 and N400 effects of accurate prediction were reduced in older readers, both temporal primacy and relative amplitudes of predictive compared to contextual processing were similar across age. In Experiment 2, participants read for comprehension without an overt prediction task and showed similar age-related declines in N400 amplitude across experiments. In both studies, older adults showed relatively larger frontal post-N400 positivities (PNPs) than young adults, suggesting age-graded differences in revision following unexpected items. Previous research suggests the production system may be linked to lexical prediction, but here we found that verbal fluency modulated PNP effects of contextual support, but not predictive accuracy. Taken together, our findings suggest that normative aging does not result in specific declines or boosts of lexical prediction.


2019 ◽  
Author(s):  
Meaghan Elizabeth Spedden ◽  
Mikkel Malling Beck ◽  
Mark Schram Christensen ◽  
Martin Jensen Dietz ◽  
Anke Ninija Karabanov ◽  
...  

AbstractThe control of ankle muscle force is an integral component of walking and postural control. Aging impairs the ability to produce force steadily and accurately, which can compromise functional capacity and quality of life. Here, we hypothesized that reduced force control in older adults would be associated with altered cortico-cortical communication within a network comprising the primary motor area (M1), the premotor cortex (PMC), parietal, and prefrontal regions. We examined electroencephalographic (EEG) responses from fifteen younger (20-26 yr) and fifteen older (65-73 yr) participants during a unilateral dorsiflexion force-tracing task. Dynamic Causal Modelling (DCM) and Parametric Empirical Bayes (PEB) were used to investigate how directed connectivity between contralateral M1, PMC, parietal, and prefrontal regions was related to age group and precision in force production. DCM and PEB analyses revealed that the strength of connections between PMC and M1 were related to ankle force precision and differed by age group. For young adults, bidirectional PMC-M1 coupling was negatively related to task performance: stronger backward M1-PMC and forward PMC-M1 coupling was associated with worse force precision. The older group exhibited deviations from this pattern. For the PMC to M1 coupling, there were no age-group differences in coupling strength; however, within the older group, stronger coupling was associated with better performance. For the M1 to PMC coupling, older adults followed the same pattern as young adults - with stronger coupling accompanied by worse performance - but coupling strength was lower than in the young group. Our results suggest that bidirectional M1-PMC communication is related to precision in ankle force production and that this relationship changes with aging. We argue that the observed age-related differences reflect compensatory mechanisms whereby older adults maintain performance in the face of declines in the sensorimotor system.


Author(s):  
Ernest K. Ofori ◽  
Savitha Subramaniam ◽  
Shuaijie Wang ◽  
Tanvi Bhatt

Background: Recent studies demonstrate improvements in both postural stability and mobility among aging populations and those with stroke who are exposed to dance-based exergaming (DBExG). However, age-related deficits and aging with cortical pathology may lead to distinct movement adaptation patterns during DBExG, which could impact therapeutic outcomes.Aim: The aim of this study was to examine the movement kinematics (postural stability and mobility) of healthy older adults, older adults with stroke, and young adults for different paces of dance during DBExG. Method: The study included 33 particpants (11 participant from each group of healthy older adults, older adults with chronic stroke, and healthy young adults) who performed the DBExG using slow- (SP), medium- (MP), and fast-paced (FP) songs with movements in the anteroposterior (AP) and mediolateral (ML) directions. Center of mass (CoM) sway area, excursion (Ex), and peaks as well as hip, knee, and ankle joint excursions were computed. Results: Results of the study revealed that CoM sway areas and Exs were greater for healthy young adults than for older adults with stroke for the SP dance (p < 0.05) and that there were significantly more AP CoM peaks for young adults than for healthy older adults and those with stroke for the FP dance (p < 0.05). Young adults also exhibited greater hip and ankle Exs than older adults with stroke (p < 0.05) for all song paces. Similarly, knee and ankle Exs were greater for healthy older adults than for older adults with stroke for all song paces (p < 0.05). Conclusion: The quantitative evaluation and comparison of the movement patterns presented for the three groups could provide a foundation for both assessing and designing therapeutic DBExG protocols for these populations.


2020 ◽  
Vol 24 ◽  
pp. 233121652093054 ◽  
Author(s):  
Tali Rotman ◽  
Limor Lavie ◽  
Karen Banai

Challenging listening situations (e.g., when speech is rapid or noisy) result in substantial individual differences in speech perception. We propose that rapid auditory perceptual learning is one of the factors contributing to those individual differences. To explore this proposal, we assessed rapid perceptual learning of time-compressed speech in young adults with normal hearing and in older adults with age-related hearing loss. We also assessed the contribution of this learning as well as that of hearing and cognition (vocabulary, working memory, and selective attention) to the recognition of natural-fast speech (NFS; both groups) and speech in noise (younger adults). In young adults, rapid learning and vocabulary were significant predictors of NFS and speech in noise recognition. In older adults, hearing thresholds, vocabulary, and rapid learning were significant predictors of NFS recognition. In both groups, models that included learning fitted the speech data better than models that did not include learning. Therefore, under adverse conditions, rapid learning may be one of the skills listeners could employ to support speech recognition.


Sign in / Sign up

Export Citation Format

Share Document