scholarly journals The Potential of Ferroptosis-Targeting Therapies for Alzheimer’s Disease: From Mechanism to Transcriptomic Analysis

2021 ◽  
Vol 13 ◽  
Author(s):  
Nad’a Majerníková ◽  
Wilfred F. A. den Dunnen ◽  
Amalia M. Dolga

Alzheimer’s disease (AD), the most common form of dementia, currently affects 40–50 million people worldwide. Despite the extensive research into amyloid β (Aβ) deposition and tau protein hyperphosphorylation (p-tau), an effective treatment to stop or slow down the progression of neurodegeneration is missing. Emerging evidence suggests that ferroptosis, an iron-dependent and lipid peroxidation-driven type of programmed cell death, contributes to neurodegeneration in AD. Therefore, how to intervene against ferroptosis in the context of AD has become one of the questions addressed by studies aiming to develop novel therapeutic strategies. However, the underlying molecular mechanism of ferroptosis in AD, when ferroptosis occurs in the disease course, and which ferroptosis-related genes are differentially expressed in AD remains to be established. In this review, we summarize the current knowledge on cell mechanisms involved in ferroptosis, we discuss how these processes relate to AD, and we analyze which ferroptosis-related genes are differentially expressed in AD brain dependant on cell type, disease progression and gender. In addition, we point out the existing targets for therapeutic options to prevent ferroptosis in AD. Future studies should focus on developing new tools able to demonstrate where and when cells undergo ferroptosis in AD brain and build more translatable AD models for identifying anti-ferroptotic agents able to slow down neurodegeneration.

2020 ◽  
Vol 17 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Patrick Süß ◽  
Johannes C.M. Schlachetzki

: Alzheimer’s Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-β (Aβ) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aβ plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. : In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.


2021 ◽  
Vol 15 ◽  
Author(s):  
Cátia R. Lopes ◽  
Rodrigo A. Cunha ◽  
Paula Agostinho

Astrocytes, through their numerous processes, establish a bidirectional communication with neurons that is crucial to regulate synaptic plasticity, the purported neurophysiological basis of memory. This evidence contributed to change the classic “neurocentric” view of Alzheimer’s disease (AD), being astrocytes increasingly considered a key player in this neurodegenerative disease. AD, the most common form of dementia in the elderly, is characterized by a deterioration of memory and of other cognitive functions. Although, early cognitive deficits have been associated with synaptic loss and dysfunction caused by amyloid-β peptides (Aβ), accumulating evidences support a role of astrocytes in AD. Astrocyte atrophy and reactivity occurring at early and later stages of AD, respectively, involve morphological alterations that translate into functional changes. However, the main signals responsible for astrocytic alterations in AD and their impact on synaptic function remain to be defined. One possible candidate is adenosine, which can be formed upon extracellular catabolism of ATP released by astrocytes. Adenosine can act as a homeostatic modulator and also as a neuromodulator at the synaptic level, through the activation of adenosine receptors, mainly of A1R and A2AR subtypes. These receptors are also present in astrocytes, being particularly relevant in pathological conditions, to control the morphofunctional responses of astrocytes. Here, we will focus on the role of A2AR, since they are particularly associated with neurodegeneration and also with memory processes. Furthermore, A2AR levels are increased in the AD brain, namely in astrocytes where they can control key astrocytic functions. Thus, unveiling the role of A2AR in astrocytes function might shed light on novel therapeutic strategies for AD.


2020 ◽  
Vol 68 (6) ◽  
pp. 1135-1140 ◽  
Author(s):  
Allison Bethanne Reiss ◽  
Amy D Glass ◽  
Thomas Wisniewski ◽  
Benjamin Wolozin ◽  
Irving H Gomolin ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative brain disorder associated with relentlessly progressive cognitive impairment and memory loss. AD pathology proceeds for decades before cognitive deficits become clinically apparent, opening a window for preventative therapy. Imbalance of clearance and buildup of amyloid β and phosphorylated tau proteins in the central nervous system is believed to contribute to AD pathogenesis. However, multiple clinical trials of treatments aimed at averting accumulation of these proteins have yielded little success, and there is still no disease-modifying intervention. Here, we discuss current knowledge of AD pathology and treatment with an emphasis on emerging biomarkers and treatment strategies.


2022 ◽  
Author(s):  
Micaela E Consens ◽  
Yuxiao Chen ◽  
Vilas Menon ◽  
Yanling Wang ◽  
Julie A Schneider ◽  
...  

Background: Cortical neuron loss is a pathological hallmark of late-onset Alzheimer's disease (AD). However, it remains unclear which neuronal subtypes are most vulnerable to degeneration and contribute most to cognitive decline. Methods: We analyzed postmortem bulk brain RNA-sequencing (RNAseq) data collected from three studies of aging and AD comprising six neocortical regions (704 individuals; 1037 samples). We estimated relative cell type proportions from each brain sample using neuronal subclass-specific marker genes derived from ultra-high depth single-nucleus RNAseq data (snRNAseq). We associated cell type proportions with AD across all samples using mixed-effects mega-analyses. Bulk tissue analyses were complemented by analyses of three AD snRNAseq datasets using the same cell type definitions and diagnostic criteria (51 individuals). Lastly, we identified cell subtype associations with specific neuropathologies, cognitive decline, and residual cognition. Results: In our mega-analyses, we identified the strongest associations of AD with fewer somatostatin (SST) inhibitory neurons (β=-0.48, pbonf=8.98x10-9) and intra-telencephalic (IT) excitatory neurons (β=-0.45, pbonf =4.32x10-7). snRNAseq-based cell type proportion analyses especially supported the association of SST neurons. Analyses of cell type proportions with specific AD-related phenotypes in ROS/MAP consistently implicated fewer SST neurons with greater brain-wide postmortem tau and beta amyloid (β=-0.155, pFDR=3.1x10-4) deposition, as well as more severe cognitive decline prior to death (β=0.309, pFDR=3.9x10-6). Greater IT neuron proportions were associated strongly with improved cognition (β=0.173, pFDR=8.3x10-5) and residual cognition (β=0.175, pFDR=1.2x10-5), but not canonical AD neuropathology. Conclusions: Proportionally fewer SST and IT neurons were significantly associated with AD diagnosis across multiple studies and cortical regions. These findings support seminal work implicating somatostatin and pyramidal neurons in the pathogenesis of AD and improves our current understanding of neuronal vulnerability in AD.


Author(s):  
Benjamin L. Handen

Abstract Adults with Down syndrome are at high risk for Alzheimer's disease (AD), with most individuals developing clinical dementia by their late 60s. This increased risk for AD has been attributed, at least in part, to triplication and overexpression of the gene for amyloid precursor protein (APP) on chromosome 21, leading to elevated levels of amyloid β peptides. This article offers a brief overview of our current knowledge of AD in the DS population. In addition, information on a NIA/NICHD-funded, multicenter longitudinal study of biomarkers of AD in adults with DS is provided.


2021 ◽  
Author(s):  
Alexis Moscoso ◽  
Jesus Silva-Rodriguez ◽  
Jose Manuel Aldrey ◽  
Julia Cortes ◽  
Juan Manuel Pias-Peleteiro ◽  
...  

Abstract Purpose: Recent evidence suggest that PET imaging with amyloid-β (Aβ) tracers can be used to assess myelin integrity in cerebral white matter (WM). Alzheimer’s disease (AD) is characterized by myelin changes that are believed to occur early in the disease course. Nevertheless, the extent to which demyelination, as measured with Aβ PET, contributes to AD progression remains unexplored.Methods: Participants with concurrent 18F-florbetapir (FBP), MRI, and cerebrospinal fluid (CSF) examinations were included (241 cognitively normal, 347 Aβ-positive cognitively impaired, and 207 Aβ-negative cognitively impaired subjects). A subset of these participants had also available diffusion tensor imaging (DTI) images (n=195). We investigated cross-sectional associations of FBP retention in the white matter (WM) with MRI-based markers of WM degeneration, AD clinical progression, and CSF biomarkers. In longitudinal analyses, we used linear mixed models to assess whether FBP retention in normal-appearing WM (NAWM) predicted progression of WM hyperintensity (WMH) burden and clinical decline. Results: In AD-continuum individuals, FBP retention in NAWM was 1) higher compared to WMH regions, 2) associated with DTI-based measures of WM integrity, and 3) associated with longitudinal progression of WMH burden. FBP uptake in WM decreased across the AD continuum and with increasingly abnormal CSF biomarkers of AD. Furthermore, FBP retention in the WM was associated with large-calibre axon degeneration as reflected by abnormal plasma neurofilament light chain levels. Low FBP uptake in NAWM predicted clinical decline in preclinical and prodromal AD, independent of demographics, global cortical Aβ, and WMH burden. Most of these associations were also observed in Aβ-negative cognitively impaired individuals.Conclusion: These results support the hypothesis that FBP retention in the WM is myelin-dependent. Demyelination levels progressed across the AD continuum and were associated with clinical progression at early stages, suggesting that this pathologic process might be a relevant degenerative feature in the disease course.


Author(s):  
Alexis Moscoso ◽  
Jesús Silva-Rodríguez ◽  
Jose Manuel Aldrey ◽  
Julia Cortés ◽  
Juan Manuel Pías-Peleteiro ◽  
...  

Abstract Purpose Recent evidence suggests that PET imaging with amyloid-β (Aβ) tracers can be used to assess myelin integrity in cerebral white matter (WM). Alzheimer’s disease (AD) is characterized by myelin changes that are believed to occur early in the disease course. Nevertheless, the extent to which demyelination, as measured with Aβ PET, contributes to AD progression remains unexplored. Methods Participants with concurrent 18F-florbetapir (FBP) PET, MRI, and cerebrospinal fluid (CSF) examinations were included (241 cognitively normal, 347 Aβ-positive cognitively impaired, and 207 Aβ-negative cognitively impaired subjects). A subset of these participants had also available diffusion tensor imaging (DTI) images (n = 195). We investigated cross-sectional associations of FBP retention in the white matter (WM) with MRI-based markers of WM degeneration, AD clinical progression, and fluid biomarkers. In longitudinal analyses, we used linear mixed models to assess whether FBP retention in normal-appearing WM (NAWM) predicted progression of WM hyperintensity (WMH) burden and clinical decline. Results In AD-continuum individuals, FBP retention in NAWM was (1) higher compared with WMH regions, (2) associated with DTI-based measures of WM integrity, and (3) associated with longitudinal progression of WMH burden. FBP uptake in WM decreased across the AD continuum and with increasingly abnormal CSF biomarkers of AD. Furthermore, FBP retention in the WM was associated with large-calibre axon degeneration as reflected by abnormal plasma neurofilament light chain levels. Low FBP uptake in NAWM predicted clinical decline in preclinical and prodromal AD, independent of demographics, global cortical Aβ, and WMH burden. Most of these associations were also observed in Aβ-negative cognitively impaired individuals. Conclusion These results support the hypothesis that FBP retention in the WM is myelin-related. Demyelination levels progressed across the AD continuum and were associated with clinical progression at early stages, suggesting that this pathologic process might be a relevant degenerative feature in the disease course.


2007 ◽  
Vol 43 ◽  
pp. 153-164 ◽  
Author(s):  
Chris Peers ◽  
Hugh A. Pearson ◽  
John P. Boyle

Numerous cardiorespiratory disorders result in persistent systemic hypoxia, or at worst (as a consequence of stroke) deprive the brain of oxygen completely for a period of time. Patients suffering from such conditions are much more susceptible to the development of dementias such as AD (Alzheimer’s disease). Until recently, the cellular and molecular basis for the predisposition to AD by systemic hypoxia has been completely unknown. However, emerging evidence suggests that pathological cellular remodelling caused by chronic hypoxia shows striking similarities to those observed in the central nervous system as a consequence of AD. Furthermore, prolonged hypoxia can induce formation of Aβs (amyloid β peptides), the primary neurotoxic elements of AD, which accumulate over years to form the extracellular plaques that are the hallmark feature of the disease. Hypoxia can lead to paradoxical increases in mitochondrial ROS (reactive oxygen species) generation upstream of Aβ formation. The downstream consequences of prolonged hypoxia include remodelling of functional expression of voltage-gated calcium channels and disturbance of intracellular calcium homoeostasis via disrupted calcium buffering and inhibition of calcium extrusion mechanisms. These effects can be mimicked by application of exogenous Aβ and, crucially, appear to depend on Aβ formation. Current knowledge supports the concept that prevention of the deleterious effects of hypoxia may prove beneficial in slowing or preventing the onset of AD.


2020 ◽  
Vol 21 (13) ◽  
pp. 4812 ◽  
Author(s):  
Yvette Akwa

Alzheimer’s disease (AD) is a multifactorial age-related neurodegenerative disease that today has no effective treatment to prevent or slow its progression. Neuroactive steroids, including neurosteroids and sex steroids, have attracted attention as potential suitable candidates to alleviate AD pathology. Accumulating evidence shows that they exhibit pleiotropic neuroprotective properties that are relevant for AD. This review focuses on the relationship between selected neuroactive steroids and the main aspects of AD disease, pointing out contributions and gaps with reference to sex differences. We take into account the regulation of brain steroid concentrations associated with human AD pathology. Consideration is given to preclinical studies in AD models providing current knowledge on the neuroprotection offered by neuroactive (neuro)steroids on major AD pathogenic factors, such as amyloid-β (Aβ) and tau pathology, mitochondrial impairment, neuroinflammation, neurogenesis and memory loss. Stimulating endogenous steroid production opens a new steroid-based strategy to potentially overcome AD pathology. This article is part of a Special Issue entitled Steroids and the Nervous System.


2010 ◽  
Vol 38 (1) ◽  
pp. 150-155 ◽  
Author(s):  
Annakaisa Haapasalo ◽  
Jayashree Viswanathan ◽  
Lars Bertram ◽  
Hilkka Soininen ◽  
Rudolph E. Tanzi ◽  
...  

Abnormal protein aggregation and intracellular or extracellular accumulation of misfolded and aggregated proteins are key events in the pathogenesis of different neurodegenerative diseases. Furthermore, endoplasmic reticulum stress and impairment of the ubiquitin–proteasome system probably contribute to neurodegeneration in these diseases. A characteristic feature of AD (Alzheimer's disease) is the abnormal accumulation of Aβ (amyloid β-peptide) in the brain. Evidence shows that the AD-associated PS (presenilin) also forms aggregates under certain conditions and that another AD-associated protein, ubiquilin-1, controls protein aggregation and deposition of aggregated proteins. Here, we review the current knowledge of ubiquilin-1 and PS in protein aggregation and related events that potentially influence neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document