scholarly journals Robust Trajectory Generation for Robotic Control on the Neuromorphic Research Chip Loihi

2020 ◽  
Vol 14 ◽  
Author(s):  
Carlo Michaelis ◽  
Andrew B. Lehr ◽  
Christian Tetzlaff

Neuromorphic hardware has several promising advantages compared to von Neumann architectures and is highly interesting for robot control. However, despite the high speed and energy efficiency of neuromorphic computing, algorithms utilizing this hardware in control scenarios are still rare. One problem is the transition from fast spiking activity on the hardware, which acts on a timescale of a few milliseconds, to a control-relevant timescale on the order of hundreds of milliseconds. Another problem is the execution of complex trajectories, which requires spiking activity to contain sufficient variability, while at the same time, for reliable performance, network dynamics must be adequately robust against noise. In this study we exploit a recently developed biologically-inspired spiking neural network model, the so-called anisotropic network. We identified and transferred the core principles of the anisotropic network to neuromorphic hardware using Intel's neuromorphic research chip Loihi and validated the system on trajectories from a motor-control task performed by a robot arm. We developed a network architecture including the anisotropic network and a pooling layer which allows fast spike read-out from the chip and performs an inherent regularization. With this, we show that the anisotropic network on Loihi reliably encodes sequential patterns of neural activity, each representing a robotic action, and that the patterns allow the generation of multidimensional trajectories on control-relevant timescales. Taken together, our study presents a new algorithm that allows the generation of complex robotic movements as a building block for robotic control using state of the art neuromorphic hardware.

2012 ◽  
Vol 591-593 ◽  
pp. 251-258
Author(s):  
Wen Wei Wang ◽  
Cheng Lin ◽  
Wan Ke Cao ◽  
Jiao Yang Chen

Multi-motor wheel independent driving technology is an important direction of electric vehicle(EV). Based on the analysis of the features of existing independent driving system of electric vehicle, a new dual-motor independent driving system configuration was designed. Complete parameters matching and simulation analysis of the system include motor, reducer, and battery. Distributed control network architecture based on high-speed CAN bus was developed, and information scheduling was optimized and real-time predictability was analyzed based on the rate monotonic (RM) algorithm and jitter margin index. The vehicle lateral stability control was achieved based on coordinated electro-hydraulic active braking. Based on the new dual-motor independent driving system, a new battery electric car was designed and tested. The results show that the vehicle has excellent dynamic and economic performance.


2012 ◽  
Vol 198-199 ◽  
pp. 1783-1788
Author(s):  
Jun Ting Lin ◽  
Jian Wu Dang

As a dedicated digital mobile communication system designed for railway application, GSM-R must provide reliable bidirectional channel for transmitting security data between trackside equipments and on-train computer on high-speed railways. To ensure the safety of running trains, redundant network architecture is commonly used to guarantee the reliability of GSM-R. Because of the rigid demands of railway security, it is important to build reliability mathematical models, predict the network reliability and select a suitable one. Two common GSM-R wireless architectures, co-sited double layers network and intercross single layer network, are modeled and contrasted in this paper. By calculating the reliabilities of each reliable model, it is clear that more redundant the architecture is, more reliable the system will be, the whole system will bear a less failure time per year as the benefit. Meanwhile, as the redundancy of GSM-R system raises, its equipment and maintenance will cost much, but the reliability raise gently. From the standpoint of transmission system interruption and network equipment failure, the reliability of co-sited double layer network architecture is higher than the intercross single layer one, while the viability and cost of the intercross redundant network is better than co-sited one in natural disasters such as flood and lightning. Taking fully into account reliability, viability and cost, we suggest that intercross redundant network should be chosen on high-speed railway.


2011 ◽  
Vol 08 (03) ◽  
pp. 181-195
Author(s):  
ZHAOXIAN XIE ◽  
HISASHI YAMAGUCHI ◽  
MASAHITO TSUKANO ◽  
AIGUO MING ◽  
MAKOTO SHIMOJO

As one of the home services by a mobile manipulator system, we are aiming at the realization of the stand-up motion support for elderly people. This work is charaterized by the use of real-time feedback control based on the information from high speed tactile sensors for detecting the contact force as well as its center of pressure between the assisted human and the robot arm. First, this paper introduces the design of the tactile sensor as well as initial experimental results to show the feasibility of the proposed system. Moreover, several fundamental tactile sensing-based motion controllers necessary for the stand-up motion support and their experimental verification are presented. Finally, an assist trajectory generation method for the stand-up motion support by integrating fuzzy logic with tactile sensing is proposed and demonstrated experimentally.


2014 ◽  
Vol 1044-1045 ◽  
pp. 1380-1383
Author(s):  
Guang Li Yin

Safety problem is one of the most attention and concern of driving. This paper in the high-speed on the road cars and car, car and road communications, vehicle real-time status, through the network information service system integration on a platform, on the use of related technologies are analyzed, the design of the software system based on SOA architecture.Keywords: network, GPS module, SOA cross platformI. IntorductionWith the development of science and technology and the improvement of people's living standard, Car popularity rate is high, it's hard to believe, families has two or three car. Whether it is the bus or private car is such rapid development, this will bring a lot of problems in road traffic, such as traffic congestion, traffic accident. These problems affect the normal life and travel, it is necessary to carry out management and provide information service for road use advanced technology. Using mobile phone GPS positioning module can obtain the vehicle speed and the basic information, through processing and optimization of information service system, the analysis of data useful, so as to divert traffic, both for the convenience of the user, but also improve the expressway management ability.


Author(s):  
Biyyala Srijith

A Gesture Controlled Car is a robot that can be controlled with a simple human touch. The user only needs to wear a touch device where the sensor is installed. The sensor will record the movement of the hand in a certain direction that will lead to the movement of the robot in the right places. The robot and the touch device are connected wirelessly with radio waves. The user can communicate with the robot in a very friendly way due to wireless communication. We can control the car using accelerometer sensors that are connected to our hand glove. Sensors are designed to replace the remote control commonly used to drive a car. It will allow the user to control the forward, backward, left and right, while using the same accelerometer sensor to control the car's steering wheel. The movement of the car is controlled by the separation method. The machine involves rotating both front and rear wheels on the left or right side to move the non-clockwise side and another pair around the clock causing the car to rotate with its axis without going forward or backward. The main advantage of this machine is that the car with this method can take sharp turns without difficulty. The design and use of a robotic control arm using a flex sensor is suggested. The robot arm is designed to consist of four moving fingers, each with three connectors, an opposing thumb, a round wrist, and an elbow. The robot arm is designed to mimic the movements of a human hand using a hand glove.


2018 ◽  
Vol 3 (3) ◽  
pp. 1727-1734 ◽  
Author(s):  
Shotaro Mori ◽  
Kazutoshi Tanaka ◽  
Satoshi Nishikawa ◽  
Ryuma Niiyama ◽  
Yasuo Kuniyoshi
Keyword(s):  

2021 ◽  
Vol 2119 (1) ◽  
pp. 012068
Author(s):  
A N Chernyavskiy ◽  
I P Malakhov

Abstract Visual analysis allows an estimate of different local boiling characteristics including bubble growth rate, departure diameters and frequencies of nucleation, nucleation site density and evolution of bubbles and dry spots in time. At the same time, visual determination of the presented characteristics in case of big amounts of data requires the development of the appropriate software which will allow not only determination of bubble location, but also an estimate of their sizes based on high-speed video. The presented problem can be solved by using the instance segmentation approach based on a convolutional neural network. In the presented work Mask R-CNN network architecture was used for estimation of the local boiling characteristics.


Author(s):  
Hang Gong ◽  
Shangdong Zheng ◽  
Zebin Wu ◽  
Yang Xu ◽  
Zhihui Wei ◽  
...  

The small defects in overhead catenary system (OCS) can result in long time delays, economic loss and even passenger injury. However, OCS images exhibit great variations with complex background and oblique views which pose a great challenge for small defects detection in high-speed rail system. In this paper, we propose the spatial-prior-guided attention for small object detection in OCS with two main advantages: (1) The spatial-prior is proposed to retain the spatial information between small defects and the electric components in OCS. (2) Based on spatial-prior, the spatial-prior-guided attention model (SAM) is designed to highlight useful information in the features and suppress redundant features response. SAM can model the spatial relations progressively and can be integrated with state-of-the-art feed-forward network architecture with end-to-end training fashion. We conduct extensive experiments on both Split pin datasets and PASCAL–VOC datasets and achieve 97.2% and 79.5% mAP values, respectively. All the experiments demonstrate the competitive performance of our method.


2021 ◽  
Author(s):  
Xiao Liang ◽  
Hairui Zhu ◽  
YanLong Chen ◽  
Yuji Yamakawa
Keyword(s):  

Author(s):  
Sunghoon Kim ◽  
H. Kazerooni

A networked control system (NCS) is a control architecture where sensors, actuators and controllers are distributed and interconnected. It is advantageous in terms of interoperability, expandability, installation, volume of wiring, maintenance, and cost-effectiveness. Many distributed network systems of various topologies and network type have been developed, but NCS systems tend to suffer from such issues as nondeterminism, long network delays, large overheads and unfairness. This paper presents the ring-based protocol, called the ExoNet, and its network architecture which are built to achieve better performance as a distributed networked system. A Cypress transceiver CY7C924ADX is applied to the network as a communication unit. The protocol is based on the transceiver and developed to achieve fast communication and allowable latency for controls with high control loop frequency. Compared with other standard network types such as Ethernet, ControlNet or DeviceNet, the network is characterized by its ring-based architecture, simple message and packet formats, one-shot distribution of control data and collection of sensor data, multi-node transmission, echo of a message, and other features. The network also guarantees determinism, collision-free transmission, relatively small overhead, fairness between nodes and flexibility in configuration. Its analysis and comparison with these network types are also provided and its application on the Berkeley Lower-Extremity Exoskeleton (BLEEX) is described.


Sign in / Sign up

Export Citation Format

Share Document