scholarly journals Astrocyte Pannexin 1 Suppresses LPS-Induced Inflammatory Responses to Protect Neuronal SH-SY5Y Cells

2021 ◽  
Vol 15 ◽  
Author(s):  
Zhuo-Min Ling ◽  
Qian Wang ◽  
Yu Ma ◽  
Peng Xue ◽  
Yun Gu ◽  
...  

Reactive astrogliosis is a key hallmark of inflammatory responses in the pathogenesis of brain injury, including Parkinson’s disease (PD), but its role and regulatory mechanisms are not fully understood. Pannexin 1 (Panx 1) is a membrane channel that mediates substance release in many neurodegenerative diseases. However, the role of astrocyte Panx 1 in the regulation of PD-like neuroinflammation remains elusive. Here, we characterized the expression of Panx 1 in isolated primary astrocytes and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model. The functions of Panx 1 in inflammatory cytokines expression and the viability of neuronal SH-SY5Y cells were examined in cultured cells treated with lipopolysaccharide (LPS) and 1-methyl-4-phenylpyridinium (MPP+). We found that Panx 1 expression was significantly increased under both LPS- and MPP+-treated conditions. Panx 1 downregulation suppressed LPS-induced pro-inflammatory cytokine expression but did not significantly affect MPP+-induced astrocyte apoptosis or inflammatory cytokine expression through treatment with the Panx 1 inhibitor carbenoxolone (CBX) and Panx 1 siRNA. Moreover, silencing Panx 1 in reactive astrocytes had a potentially protective effect on the viability of neuronal SH-SY5Y cells. Therefore, we propose that Panx 1 may serve as a key regulator in reactive astrocytes to intervene in the inflammatory response and maintain neuronal viability in the context of PD-like conditions.

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Taeyeop Park ◽  
Huazhen Chen ◽  
Hee-Yong Kim

Abstract Background Neuroinflammation is a widely accepted underlying condition for various pathological processes in the brain. In a recent study, synaptamide, an endogenous metabolite derived from docosahexaenoic acid (DHA, 22:6n-3), was identified as a specific ligand to orphan adhesion G-protein-coupled receptor 110 (GPR110, ADGRF1). Synaptamide has been shown to suppress lipopolysaccharide (LPS)-induced neuroinflammation in mice, but involvement of GPR110 in this process has not been established. In this study, we investigated the possible immune regulatory role of GPR110 in mediating the anti-neuroinflammatory effects of synaptamide under a systemic inflammatory condition. Methods For in vitro studies, we assessed the role of GPR110 in synaptamide effects on LPS-induced inflammatory responses in adult primary mouse microglia, immortalized murine microglial cells (BV2), primary neutrophil, and peritoneal macrophage by using quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) as well as neutrophil migration and ROS production assays. To evaluate in vivo effects, wild-type (WT) and GPR110 knock-out (KO) mice were injected with LPS intraperitoneally (i.p.) or TNF intravenously (i.v.) followed by synaptamide (i.p.), and expression of proinflammatory mediators was measured by qPCR, ELISA, and western blot analysis. Activated microglia in the brain and NF-kB activation in cells were examined microscopically after immunostaining for Iba-1 and RelA, respectively. Results Intraperitoneal (i.p.) administration of LPS increased TNF and IL-1β in the blood and induced pro-inflammatory cytokine expression in the brain. Subsequent i.p. injection of the GPR110 ligand synaptamide significantly reduced LPS-induced inflammatory responses in wild-type (WT) but not in GPR110 knock-out (KO) mice. In cultured microglia, synaptamide increased cAMP and inhibited LPS-induced proinflammatory cytokine expression by inhibiting the translocation of NF-κB subunit RelA into the nucleus. These effects were abolished by blocking synaptamide binding to GPR110 using an N-terminal targeting antibody. GPR110 expression was found to be high in neutrophils and macrophages where synaptamide also caused a GPR110-dependent increase in cAMP and inhibition of LPS-induced pro-inflammatory mediator expression. Intravenous injection of TNF, a pro-inflammatory cytokine that increases in the circulation after LPS treatment, elicited inflammatory responses in the brain which were dampened by the subsequent injection (i.p.) of synaptamide in a GPR110-dependent manner. Conclusion Our study demonstrates the immune-regulatory function of GPR110 in both brain and periphery, collectively contributing to the anti-neuroinflammatory effects of synaptamide under a systemic inflammatory condition. We suggest GPR110 activation as a novel therapeutic strategy to ameliorate inflammation in the brain as well as periphery.


2008 ◽  
Vol 294 (4) ◽  
pp. E709-E718 ◽  
Author(s):  
Klemen Strle ◽  
Robert H. McCusker ◽  
Rodney W. Johnson ◽  
Samantha M. Zunich ◽  
Robert Dantzer ◽  
...  

Prolonged and excessive inflammation is implicated in resistance to the biological actions of IGF-I and contributes to the pathophysiology of neurodegenerative, metabolic, and muscle-wasting disorders. IL-10 is a critical anti-inflammatory cytokine that restrains inflammatory responses in macrophages and T cells by inhibiting cytokine and chemokine synthesis and reducing expression of their receptors. Here we demonstrate that IL-10 plays a protective role in nonhematopoietic cells by suppressing the ability of exogenous IL-1β to inhibit IGF-I-induced myogenin and myosin heavy chain expression in myoblasts. This action of IL-10 is not caused by impairment of IL-1β-induced synthesis of IL-6 or the ability of IL-1β to activate two members of the MAPK family, ERK1/2 and p38. Instead, this newly defined protective role of IL-10 occurs by specific reversal of IL-1β activation of the JNK kinase pathway. IL-10 blocks IL-1β-induced phosphorylation of JNK, but not ERK1/2 or p38, indicating that only the JNK component of the IL-1β-induced MAPK signaling pathway is targeted by IL-10. This conclusion is supported by the finding that a specific JNK inhibitor acts similarly to IL-10 to restore IGF-I-induced myogenin expression, which is suppressed by IL-1β. Collectively, these data demonstrate that IL-10 acts in a novel, nonclassical, protective manner in nonhematopoietic cells to inhibit the IL-1β receptor-induced JNK kinase pathway, resulting in prevention of IGF-I resistance.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 272 ◽  
Author(s):  
Ksenia Timonina ◽  
Anna Kotova ◽  
Georg Zoidl

Pannexin 1 (Panx1) is a ubiquitously expressed hexameric integral membrane protein known to function as an adenosine triphosphate (ATP) release channel. Panx1 proteins exist in unglycosylated core form (Gly0). They undergo critical post-translational modifications forming the high mannose glycosylation state (Gly1) in the endoplasmic reticulum (ER) and the complex glycosylation state (Gly2) in the Golgi apparatus. The regulation of transition from the ER to the cell membrane is not fully understood. Using site-specific mutagenesis, dye uptake assays, and interaction testing, we identified two conserved aromatic residues, Trp123 and Tyr205, in the transmembrane domains 2 and 3 of the zebrafish panx1a protein. Results suggest that both residues primarily govern the assembly of panx1a subunits into channels, with mutant proteins failing to interact. The results provide insight into a mechanism enabling regulation of Panx1 oligomerization, glycosylation, and trafficking.


2019 ◽  
Vol 11 (485) ◽  
pp. eaav8731 ◽  
Author(s):  
Qing Sang ◽  
Zhihua Zhang ◽  
Juanzi Shi ◽  
Xiaoxi Sun ◽  
Bin Li ◽  
...  

Connexins and pannexins are two protein families that play an important role in cellular communication. Pannexin 1 (PANX1), one of the members of pannexin family, is a channel protein. It is glycosylated and forms three species, GLY0, GLY1, and GLY2. Here, we describe four independent families in which mutations in PANX1 cause familial or sporadic female infertility via a phenotype that we term “oocyte death.” The mutations, which are associated with oocyte death, alter the PANX1 glycosylation pattern, influence the subcellular localization of PANX1 in cultured cells, and result in aberrant PANX1 channel activity, ATP release in oocytes, and mutant PANX1 GLY1. Overexpression of a patient-derived mutation in mice causes infertility, recapitulating the human oocyte death phenotype. Our findings demonstrate the critical role of PANX1 in human oocyte development, provide a genetic explanation for a subtype of infertility, and suggest a potential target for therapeutic intervention for this disease.


2020 ◽  
Vol 7 ◽  
Author(s):  
Susara Madduma Hewage ◽  
Suvira Prashar ◽  
Samir C. Debnath ◽  
Karmin O ◽  
Yaw L. Siow

2022 ◽  
Vol 12 ◽  
Author(s):  
Fengming Ding ◽  
Lei Han ◽  
Qiang Fu ◽  
Xinxin Fan ◽  
Rong Tang ◽  
...  

Pseudomonas aeruginosa airway infection increases risks of exacerbations and mortality in chronic obstructive pulmonary disease (COPD). We aimed to elucidate the role of IL-17 in the pathogenesis. We examined the expression and influences of IL-23/IL-17A in patients with stable COPD (n = 33) or acute COPD exacerbations with P. aeruginosa infection (n = 34). A mouse model of COPD (C57BL/6) was used to investigate the role of IL-17A in host inflammatory responses against P. aeruginosa infection through the application of IL-17A–neutralizing antibody or recombinant IL-17A. We found that P. aeruginosa infection increased IL-23/17A signaling in lungs of both COPD patients and COPD mouse models. When COPD mouse models were treated with neutralizing antibody targeting IL-17A, P. aeruginosa induced a significantly less polymorphonuclear leukocyte infiltration and less bacterial burden in their lungs compared to those of untreated counterparts. The lung function was also improved by neutralizing antibody. Furthermore, IL-17A-signaling blockade significantly reduced the expression of pro-inflammatory cytokine IL-1β, IL-18, TNF-α, CXCL1, CXCL15 and MMP-9, and increased the expression of anti-inflammatory cytokine IL-10 and IL-1Ra. The application of mouse recombinant IL-17A exacerbated P. aeruginosa-mediated inflammatory responses and pulmonary dysfunction in COPD mouse models. A cytokine protein array revealed that the expression of retinol binding protein 4 (RBP4) was down-regulated by IL-17A, and exogenous RBP4-recombinant protein resulted in a decrease in the severity of P. aeruginosa-induced airway dysfunction. Concurrent application of IL-17A-neutralizing antibody and ciprofloxacin attenuated airway inflammation and ventilation after inoculation of P. aeruginosa in COPD mouse models. Our results revealed that IL-17 plays a detrimental role in the pathogenesis of P. aeruginosa airway infection during acute exacerbations of COPD. Targeting IL-17A is a potential therapeutic strategy in controlling the outcomes of P. aeruginosa infection in COPD patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ming-Wei Jan ◽  
Hong-Lin Su ◽  
Tsung-Hsien Chang ◽  
Kuen-Jer Tsai

Human parechovirus type 3 (PeV-A3) infection has been recognized as an emerging etiologic factor causing severe nerve disease or sepsis in infants and young children. But the neuropathogenic mechanisms of PeV-A3 remain unknown. To understand the pathogenesis of PeV-A3 infection in the neuronal system, PeV-A3-mediated cytopathic effects were analyzed in human glioblastoma cells and neuroblastoma cells. PeV-A3 induced interferons and inflammatory cytokine expression in these neuronal cells. The pronounced cytopathic effects accompanied with activation of death signaling pathways of apoptosis, autophagy, and pyroptosis were detected. A new experimental disease model of parechovirus encephalitis was established. In the disease model, intracranial inoculation with PeV-A3 in C57BL/6 neonatal mice showed body weight loss, hindlimb paralysis, and approximately 20% mortality. PeV-A3 infection in the hippocampus and cortex regions of the neonatal mouse brain was revealed. Mechanistic assay supported the in vitro results, indicating detection of PeV-A3 replication, inflammatory cytokine expression, and death signaling transduction in mouse brain tissues. These in vitro and in vivo studies revealed that the activation of death signaling and inflammation responses is involved in PeV-A3-mediated neurological disorders. The present results might account for some of the PeV-A3-associated clinical manifestations.


2016 ◽  
Vol 91 (3) ◽  
Author(s):  
Huiyuan Jing ◽  
Liurong Fang ◽  
Zhen Ding ◽  
Dang Wang ◽  
Wenqi Hao ◽  
...  

ABSTRACT Linear ubiquitination, a newly discovered posttranslational modification, is catalyzed by the linear ubiquitin chain assembly complex (LUBAC), which is composed of three subunits: one catalytic subunit HOIP and two accessory molecules, HOIL-1L and SHARPIN. Accumulating evidence suggests that linear ubiquitination plays a crucial role in innate immune signaling and especially in the activation of the NF-κB pathway by conjugating linear polyubiquitin chains to NF-κB essential modulator (NEMO, also called IKKγ), the regulatory subunit of the IKK complex. Porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has devastated the swine industry worldwide, is an ideal model to study the host's disordered inflammatory responses after viral infection. Here, we found that LUBAC-induced NF-κB and proinflammatory cytokine expression can be inhibited in the early phase of PRRSV infection. Screening the PRRSV-encoded proteins showed that nonstructural protein 1α (nsp1α) suppresses LUBAC-mediated NF-κB activation and its CTE domain is required for the inhibition. Mechanistically, nsp1α binds to HOIP/HOIL-1L and impairs the interaction between HOIP and SHARPIN, thus reducing the LUBAC-dependent linear ubiquitination of NEMO. Moreover, PRRSV infection also blocks LUBAC complex formation and NEMO linear-ubiquitination, the important step for transducing NF-κB signaling. This unexpected finding demonstrates a previously unrecognized role of PRRSV nsp1α in modulating LUBAC signaling and explains an additional mechanism of immune modulation by PRRSV. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) is one of the most important veterinary infectious diseases in countries with intensive swine industries. PRRS virus (PRRSV) infection usually suppresses proinflammatory cytokine expression in the early stage of infection, whereas it induces an inflammatory storm in the late stage. However, precisely how the virus is capable of doing so remains obscure. In this study, we found that by blocking the interaction of its catalytic subunit HOIP and accessory molecule SHARPIN, PRRSV can suppress NF-κB signal transduction in the early stage of infection. Our findings not only reveal a novel mechanism evolved by PRRSV to regulate inflammatory responses but also highlight the important role of linear ubiquitination modification during virus infection.


Sign in / Sign up

Export Citation Format

Share Document