scholarly journals Event-Based Sensing and Signal Processing in the Visual, Auditory, and Olfactory Domain: A Review

2021 ◽  
Vol 15 ◽  
Author(s):  
Mohammad-Hassan Tayarani-Najaran ◽  
Michael Schmuker

The nervous systems converts the physical quantities sensed by its primary receptors into trains of events that are then processed in the brain. The unmatched efficiency in information processing has long inspired engineers to seek brain-like approaches to sensing and signal processing. The key principle pursued in neuromorphic sensing is to shed the traditional approach of periodic sampling in favor of an event-driven scheme that mimicks sampling as it occurs in the nervous system, where events are preferably emitted upon the change of the sensed stimulus. In this paper we highlight the advantages and challenges of event-based sensing and signal processing in the visual, auditory and olfactory domains. We also provide a survey of the literature covering neuromorphic sensing and signal processing in all three modalities. Our aim is to facilitate research in event-based sensing and signal processing by providing a comprehensive overview of the research performed previously as well as highlighting conceptual advantages, current progress and future challenges in the field.

2018 ◽  
Vol 1 ◽  
Author(s):  
Sebastian Markett ◽  
Christian Montag ◽  
Martin Reuter

AbstractPersonality and individual differences originate from the brain. Despite major advances in the affective and cognitive neurosciences, however, it is still not well understood how personality and single personality traits are represented within the brain. Most research on brain-personality correlates has focused either on morphological aspects of the brain such as increases or decreases in local gray matter volume, or has investigated how personality traits can account for individual differences in activation differences in various tasks. Here, we propose that personality neuroscience can be advanced by adding a network perspective on brain structure and function, an endeavor that we label personality network neuroscience.With the rise of resting-state functional magnetic resonance imaging (MRI), the establishment of connectomics as a theoretical framework for structural and functional connectivity modeling, and recent advancements in the application of mathematical graph theory to brain connectivity data, several new tools and techniques are readily available to be applied in personality neuroscience. The present contribution introduces these concepts, reviews recent progress in their application to the study of individual differences, and explores their potential to advance our understanding of the neural implementation of personality.Trait theorists have long argued that personality traits are biophysical entities that are not mere abstractions of and metaphors for human behavior. Traits are thought to actually exist in the brain, presumably in the form of conceptual nervous systems. A conceptual nervous system refers to the attempt to describe parts of the central nervous system in functional terms with relevance to psychology and behavior. We contend that personality network neuroscience can characterize these conceptual nervous systems on a functional and anatomical level and has the potential do link dispositional neural correlates to actual behavior.


Author(s):  
Mitsuo Tonoike

Though olfaction is one of the necessary senses and indispensable for the maintenance of the life of the animal, the mechanism of olfaction had not yet been understood well compared with other sensory systems such as vision and audition. However, recently, the most basic principle of “signal transduction on the reception and transmission for the odor” has been clarified. Therefore, the important next problem is how the information of odors about is processed in the Central Nervous System (CNS) and how odor is perceived in the human brain. In this chapter, the basic olfactory systems in animal and human are described and examples such as “olfactory acuity, threshold, adaptation, and olfactory disorders” are discussed. The mechanism of olfactory information processing is described under the results obtained by using a few new non-invasive measuring methods. In addition, from a few recent studies, it is shown that olfactory neurophysiological information is passing through some deep central regions of the brain before finally being processed in the orbito-frontal areas.


2021 ◽  
Vol 12 ◽  
Author(s):  
Satyakam Bhagavati

Remarkable discoveries over the last two decades have elucidated the autoimmune basis of several, previously poorly understood, neurological disorders. Autoimmune disorders of the nervous system may affect any part of the nervous system, including the brain and spinal cord (central nervous system, CNS) and also the peripheral nerves, neuromuscular junction and skeletal muscle (peripheral nervous system, PNS). This comprehensive overview of this rapidly evolving field presents the factors which may trigger breakdown of self-tolerance and development of autoimmune disease in some individuals. Then the pathophysiological basis and clinical features of autoimmune diseases of the nervous system are outlined, with an emphasis on the features which are important to recognize for accurate clinical diagnosis. Finally the latest therapies for autoimmune CNS and PNS disorders and their mechanisms of action and the most promising research avenues for targeted immunotherapy are discussed.


Author(s):  
Dale Purves

Basic to the question of whether or not the brain and the rest of the human nervous system have a simple operating principle are some central facts about biology and its relation to neuroscience. What nervous systems do is best appreciated in the context of what all organisms must accomplish in order to survive and prosper, with or without neural assistance. Although the author’s understanding of these issues is no more than that of any other student who pays a modicum of attention to the broader sweep of scientific progress, this chapter considers some points of consensus. The aim is to situate the quest for a principle of neural function in the context of biology writ large.


2020 ◽  
pp. 107385842097433
Author(s):  
Sayed Ausim Azizi

How do monoamines influence the perceptual and behavioral aspects of brain function? A library of information regarding the genetic, molecular, cellular, and function of monoamines in the nervous system and other organs has accumulated. We briefly review monoamines’ anatomy and physiology and discuss their effects on the target neurons and circuits. Monoaminergic cells in the brain stem receive inputs from sensory, limbic, and prefrontal areas and project extensively to the forebrain and hindbrain. We review selected studies on molecular, cellular, and electrophysiological effects of monoamines on the brain’s target areas. The idea is that monoamines, by reversibly modulating the “primary” information processing circuits, regulate and switch the functions of brain networks and can reversibly alter the “brain states,” such as consciousness, emotions, and movements. Monoamines, as the drivers of normal motor and sensory brain operations, including housekeeping, play essential roles in pathogenesis of neuropsychiatric diseases.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Author(s):  
Grazia Tagliafierro ◽  
Cristiana Crosa ◽  
Marco Canepa ◽  
Tiziano Zanin

Barnacles are very specialized Crustacea, with strongly reduced head and abdomen. Their nervous system is rather simple: the brain or supra-oesophageal ganglion (SG) is a small bilobed structure and the toracic ganglia are fused into a single ventral mass, the suboesophageal ganglion (VG). Neurosecretion was shown in barnacle nervous system by histochemical methods and numerous putative hormonal substances were extracted and tested. Recently six different types of dense-core granules were visualized in the median ocellar nerve of Balanus hameri and serotonin and FMRF-amide like substances were immunocytochemically detected in the nervous system of Balanus amphitrite. The aim of the present work is to localize and characterize at ultrastructural level, neurosecretory neuron cell bodies in the VG of Balanus amphitrite.Specimens of Balanus amphitrite were collected in the port of Genova. The central nervous system were Karnovsky fixed, osmium postfixed, ethanol dehydrated and Durcupan ACM embedded. Ultrathin sections were stained with uranyl acetate and lead citrate. Ultrastructural observations were made on a Philips M 202 and Zeiss 109 T electron microscopy.


2012 ◽  
Vol 13 (2) ◽  
pp. 32-42 ◽  
Author(s):  
Yvette D. Hyter

Abstract Complex trauma resulting from chronic maltreatment and prenatal alcohol exposure can significantly affect child development and academic outcomes. Children with histories of maltreatment and those with prenatal alcohol exposure exhibit remarkably similar central nervous system impairments. In this article, I will review the effects of each on the brain and discuss clinical implications for these populations of children.


2018 ◽  
Vol 23 (1) ◽  
pp. 10-13
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Injuries that affect the central nervous system (CNS) can be catastrophic because they involve the brain or spinal cord, and determining the underlying clinical cause of impairment is essential in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), in part because the AMA Guides addresses neurological impairment in several chapters. Unlike the musculoskeletal chapters, Chapter 13, The Central and Peripheral Nervous System, does not use grades, grade modifiers, and a net adjustment formula; rather the chapter uses an approach that is similar to that in prior editions of the AMA Guides. The following steps can be used to perform a CNS rating: 1) evaluate all four major categories of cerebral impairment, and choose the one that is most severe; 2) rate the single most severe cerebral impairment of the four major categories; 3) rate all other impairments that are due to neurogenic problems; and 4) combine the rating of the single most severe category of cerebral impairment with the ratings of all other impairments. Because some neurological dysfunctions are rated elsewhere in the AMA Guides, Sixth Edition, the evaluator may consult Table 13-1 to verify the appropriate chapter to use.


Sign in / Sign up

Export Citation Format

Share Document