scholarly journals Genetic Transsynaptic Techniques for Mapping Neural Circuits in Drosophila

2021 ◽  
Vol 15 ◽  
Author(s):  
Lina Ni

A neural circuit is composed of a population of neurons that are interconnected by synapses and carry out a specific function when activated. It is the structural framework for all brain functions. Its impairments often cause diseases in the nervous system. To understand computations and functions in a brain circuit, it is of crucial importance to identify how neurons in this circuit are connected. Genetic transsynaptic techniques provide opportunities to efficiently answer this question. These techniques label synapses or across synapses to unbiasedly label synaptic partners. They allow for mapping neural circuits with high reproducibility and throughput, as well as provide genetic access to synaptically connected neurons that enables visualization and manipulation of these neurons simultaneously. This review focuses on three recently developed Drosophila genetic transsynaptic tools for detecting chemical synapses, highlights their advantages and potential pitfalls, and discusses the future development needs of these techniques.

2018 ◽  
Vol 120 (2) ◽  
pp. 854-866 ◽  
Author(s):  
Sarah E. V. Richards ◽  
Stephen D. Van Hooser

Circuit operations are determined jointly by the properties of the circuit elements and the properties of the connections among these elements. In the nervous system, neurons exhibit diverse morphologies and branching patterns, allowing rich compartmentalization within individual cells and complex synaptic interactions among groups of cells. In this review, we summarize work detailing how neuronal morphology impacts neural circuit function. In particular, we consider example neurons in the retina, cerebral cortex, and the stomatogastric ganglion of crustaceans. We also explore molecular coregulators of morphology and circuit function to begin bridging the gap between molecular and systems approaches. By identifying motifs in different systems, we move closer to understanding the structure-function relationships that are present in neural circuits.


Author(s):  
Sarah J Certel ◽  
Evelyne Ruchti ◽  
Brian D McCabe ◽  
R Steven Stowers

Abstract Glutamate is a principal neurotransmitter used extensively by the nervous systems of all vertebrate and invertebrate animals. It is primarily an excitatory neurotransmitter that has been implicated in nervous system development as well as a myriad of brain functions from the simple transmission of information between neurons to more complex aspects of nervous system function including synaptic plasticity, learning, and memory. Identification of glutamatergic neurons and their sites of glutamate release are thus essential for understanding the mechanisms of neural circuit function and how information is processed to generate behavior. Here we describe and characterize smFLAG-vGlut, a conditional marker of glutamatergic synaptic vesicles for the Drosophila model system. smFLAG-vGlut is validated for functionality, conditional expression, and specificity for glutamatergic neurons and synaptic vesicles. The utility of smFLAG-vGlut is demonstrated by glutamatergic neurotransmitter phenotyping of 26 different central complex neuron types of which nine were established to be glutamatergic. This illumination of glutamate neurotransmitter usage will enhance the modeling of central complex neural circuitry and thereby our understanding of information processing by this region of the fly brain. The use of smFLAG for glutamatergic neurotransmitter phenotyping and identification of glutamate release sites can be extended to any Drosophila neuron(s) represented by a binary transcription system driver.


2021 ◽  
Author(s):  
Alexei Koulakov ◽  
Sergey Shuvaev ◽  
Anthony Zador

Animals are born with extensive innate behavioral capabilities, which arise from neural circuits encoded in the genome. However, the information capacity of the genome is orders of magnitude smaller than that needed to specify the connectivity of an arbitrary brain circuit, indicating that the rules encoding circuit formation must fit through a "genomic bottleneck" as they pass from one generation to the next. Here we formulate the problem of innate behavioral capacity in the context of artificial neural networks in terms of lossy compression of the weight matrix. We find that several standard network architectures can be compressed by several orders of magnitude, yielding pre-training performance that can approach that of the fully-trained network. Interestingly, for complex but not for simple test problems, the genomic bottleneck algorithm also captures essential features of the circuit, leading to enhanced transfer learning to novel data sets. Our results suggest that compressing a neural circuit through the genomic bottleneck serves as a regularizer, enabling evolution to select simple circuits that can be readily adapted to important real-world tasks. The genomic bottleneck also suggests how innate priors can complement conventional approaches to learning in designing algorithms for artificial intelligence.


2018 ◽  
Author(s):  
Pengfei Guo ◽  
Xiao Xu ◽  
Fang Wang ◽  
Xin Yuan ◽  
Yinqi Tu ◽  
...  

AbstractThe Mammalian phosphatase of regenerating liver (PRL) family is primarily recognized for its oncogenic properties. Here we found that in Drosophila, loss of prl-1 resulted in CO2-induced brain disorder presented as irreversible wing hold up with enhancement of Ca2+ responses at the neuron synaptic terminals. Overexpression of Prl-1 in the nervous system could rescue the mutant phenotype. We show that Prl-1 is particularly expressed in CO2-responsive neural circuit and the higher brain centers. Ablation of the CO2 olfactory receptor, Gr21a, suppressed the mutant phenotype, suggesting that CO2 acts as a neuropathological substrate in absence of Prl-1. Further studies found that the wing hold up is an obvious consequence upon knockdown of Uex, a magnesium transporter, which directly interacts with Prl-1. Conditional expression of Uex in the nervous system could rescue the phenotype of prl-1 mutants. We demonstrate that Uex acts genetically downstream of Prl-1. Our findings provide important insights into mechanisms of Prl-1 protection against olfactory CO2 stimulation induced brain disorder at the level of detailed neural circuits and functional molecular connections.


2011 ◽  
Vol 7 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Hiroaki Wake ◽  
Andrew J. Moorhouse ◽  
Junichi Nabekura

Microglia cells are the immune cells of the central nervous system and consequently play important roles in brain infections and inflammation. Recent in vivo imaging studies have revealed that in the resting healthy brain, microglia are highly dynamic, moving constantly to actively survey the brain parenchyma. These active microglia can rapidly respond to pathological insults, becoming activated to induce a range of effects that may contribute to both pathogenesis, or to confer neuronal protection. However, interactions between microglia and neurons are being recognized as important in shaping neural circuit activity under more normal, physiological conditions. During development and neurogenesis, microglia interactions with neurons help to shape the final patterns of neural circuits important for behavior and with implications for diseases. In the mature brain, microglia can respond to changes in sensory activity and can influence neuronal activity acutely and over the long term. Microglia seem to be particularly involved in monitoring the integrity of synaptic function. In this review, we discuss some of these new insights into the involvement of microglia in neural circuits.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 296
Author(s):  
Sun-Nyoung Hwang ◽  
Jae Seung Lee ◽  
Kain Seo ◽  
Hyosang Lee

Astrocytes, characterized by a satellite-like morphology, are the most abundant type of glia in the central nervous system. Their main functions have been thought to be limited to providing homeostatic support for neurons, but recent studies have revealed that astrocytes actually actively interact with local neural circuits and play a crucial role in information processing and generating physiological and behavioral responses. Here, we review the emerging roles of astrocytes in many brain regions, particularly by focusing on intracellular changes in astrocytes and their interactions with neurons at the molecular and neural circuit levels.


2019 ◽  
Vol 26 (15) ◽  
pp. 2558-2573 ◽  
Author(s):  
Murat Bozdag ◽  
Abdulmalik Saleh Alfawaz Altamimi ◽  
Daniela Vullo ◽  
Claudiu T. Supuran ◽  
Fabrizio Carta

The current review is intended to highlight recent advances in the search of new and effective modulators of the metalloenzymes Carbonic Anhydrases (CAs, EC 4.2.1.1) expressed in humans (h). CAs reversibly catalyze the CO2 hydration reaction, which is of crucial importance in the regulation of a plethora of fundamental processes at cellular level as well as in complex organisms. The first section of this review will be dedicated to compounds acting as activators of the hCAs (CAAs) and their promising effects on central nervous system affecting pathologies mainly characterized from memory and learning impairments. The second part will focus on the emerging chemical classes acting as hCA inhibitors (CAIs) and their potential use for the treatment of diseases.


Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christoph Giez ◽  
Alexander Klimovich ◽  
Thomas C. G. Bosch

Abstract Animals have evolved within the framework of microbes and are constantly exposed to diverse microbiota. Microbes colonize most, if not all, animal epithelia and influence the activity of many organs, including the nervous system. Therefore, any consideration on nervous system development and function in the absence of the recognition of microbes will be incomplete. Here, we review the current knowledge on the nervous systems of Hydra and its role in the host–microbiome communication. We show that recent advances in molecular and imaging methods are allowing a comprehensive understanding of the capacity of such a seemingly simple nervous system in the context of the metaorganism. We propose that the development, function and evolution of neural circuits must be considered in the context of host–microbe interactions and present Hydra as a strategic model system with great basic and translational relevance for neuroscience.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yalan Xu ◽  
Xiuyue Song ◽  
Dong Wang ◽  
Yin Wang ◽  
Peifeng Li ◽  
...  

AbstractChemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.


2016 ◽  
Author(s):  
Nitin Gupta ◽  
Swikriti Saran Singh ◽  
Mark Stopfer

AbstractOscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly tested this idea in the locust olfactory system. We found that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we found that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrated that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking.


Sign in / Sign up

Export Citation Format

Share Document