scholarly journals Real-Time Detection of Freezing Motions in Parkinson's Patients for Adaptive Gait Phase Synchronous Cueing

2021 ◽  
Vol 12 ◽  
Author(s):  
Ardit Dvorani ◽  
Vivian Waldheim ◽  
Magdalena C. E. Jochner ◽  
Christina Salchow-Hömmen ◽  
Jonas Meyer-Ohle ◽  
...  

Parkinson's disease is the second most common neurodegenerative disease worldwide reducing cognitive and motoric abilities of affected persons. Freezing of Gait (FoG) is one of the severe symptoms that is observed in the late stages of the disease and considerably impairs the mobility of the person and raises the risk of falls. Due to the pathology and heterogeneity of the Parkinsonian gait cycle, especially in the case of freezing episodes, the detection of the gait phases with wearables is challenging in Parkinson's disease. This is addressed by introducing a state-automaton-based algorithm for the detection of the foot's motion phases using a shoe-placed inertial sensor. Machine-learning-based methods are investigated to classify the actual motion phase as normal or FoG-affected and to predict the outcome for the next motion phase. For this purpose, spatio-temporal gait and signal parameters are determined from the segmented movement phases. In this context, inertial sensor fusion is applied to the foot's 3D acceleration and rate of turn. Support Vector Machine (SVM) and AdaBoost classifiers have been trained on the data of 16 Parkinson's patients who had shown FoG episodes during a clinical freezing-provoking assessment course. Two clinical experts rated the video-recorded trials and marked episodes with festination, shank trembling, shuffling, or akinesia. Motion phases inside such episodes were labeled as FoG-affected. The classifiers were evaluated using leave-one-patient-out cross-validation. No statistically significant differences could be observed between the different classifiers for FoG detection (p>0.05). An SVM model with 10 features of the actual and two preceding motion phases achieved the highest average performance with 88.5 ± 5.8% sensitivity, 83.3 ± 17.1% specificity, and 92.8 ± 5.9% Area Under the Curve (AUC). The performance of predicting the behavior of the next motion phase was significantly lower compared to the detection classifiers. No statistically significant differences were found between all prediction models. An SVM-predictor with features from the two preceding motion phases had with 81.6 ± 7.7% sensitivity, 70.3 ± 18.4% specificity, and 82.8 ± 7.1% AUC the best average performance. The developed methods enable motion-phase-based FoG detection and prediction and can be utilized for closed-loop systems that provide on-demand gait-phase-synchronous cueing to mitigate FoG symptoms and to prevent complete motoric blockades.

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5141 ◽  
Author(s):  
Pardoel ◽  
Kofman ◽  
Nantel ◽  
Lemaire

Freezing of gait (FOG) is a serious gait disturbance, common in mid- and late-stage Parkinson’s disease, that affects mobility and increases fall risk. Wearable sensors have been used to detect and predict FOG with the ultimate aim of preventing freezes or reducing their effect using gait monitoring and assistive devices. This review presents and assesses the state of the art of FOG detection and prediction using wearable sensors, with the intention of providing guidance on current knowledge, and identifying knowledge gaps that need to be filled and challenges to be considered in future studies. This review searched the Scopus, PubMed, and Web of Science databases to identify studies that used wearable sensors to detect or predict FOG episodes in Parkinson’s disease. Following screening, 74 publications were included, comprising 68 publications detecting FOG, seven predicting FOG, and one in both categories. Details were extracted regarding participants, walking task, sensor type and body location, detection or prediction approach, feature extraction and selection, classification method, and detection and prediction performance. The results showed that increasingly complex machine-learning algorithms combined with diverse feature sets improved FOG detection. The lack of large FOG datasets and highly person-specific FOG manifestation were common challenges. Transfer learning and semi-supervised learning were promising for FOG detection and prediction since they provided person-specific tuning while preserving model generalization.


2020 ◽  
Vol 53 (2) ◽  
pp. 16004-16009
Author(s):  
A. Dvorani ◽  
M.C.E. Jochner ◽  
T. Seel ◽  
C. Salchow-Hömmen ◽  
J. Meyer-Ohle ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Kun Xu ◽  
Xiao-xia Zhou ◽  
Run-cheng He ◽  
Zhou Zhou ◽  
Zhen-hua Liu ◽  
...  

Objectives: Although risk factors for freezing of gait (FOG) have been reported, there are still few prediction models based on cohorts that predict FOG. This 1-year longitudinal study was aimed to identify the clinical measurements closely linked with FOG in Chinese patients with Parkinson's disease (PD) and construct prediction models based on those clinical measurements using Cox regression and machine learning.Methods: The study enrolled 967 PD patients without FOG in the Hoehn and Yahr (H&Y) stage 1–3 at baseline. The development of FOG during follow-up was the end-point. Neurologists trained in movement disorders collected information from the patients on a PD medication regimen and their clinical characteristics. The cohort was assessed on the same clinical scales, and the baseline characteristics were recorded and compared. After the patients were divided into the training set and test set by the stratified random sampling method, prediction models were constructed using Cox regression and random forests (RF).Results: At the end of the study, 26.4% (255/967) of the patients suffered from FOG. Patients with FOG had significantly longer disease duration, greater age at baseline and H&Y stage, lower proportion in Tremor Dominant (TD) subtype, a higher proportion in wearing-off, levodopa equivalent daily dosage (LEDD), usage of L-Dopa and catechol-O-methyltransferase (COMT) inhibitors, a higher score in scales of Unified Parkinson's Disease Rate Scale (UPDRS), 39-item Parkinson's Disease Questionnaire (PDQ-39), Non-Motor Symptoms Scale (NMSS), Hamilton Depression Rating Scale (HDRS)-17, Parkinson's Fatigue Scale (PFS), rapid eye movement sleep behavior disorder questionnaire-Hong Kong (RBDQ-HK), Epworth Sleepiness Scale (ESS), and a lower score in scales of Parkinson's Disease Sleep Scale (PDSS) (P < 0.05). The risk factors associated with FOG included PD onset not being under the age of 50 years, a lower degree of tremor symptom, impaired activities of daily living (ADL), UPDRS item 30 posture instability, unexplained weight loss, and a higher degree of fatigue. The concordance index (C-index) was 0.68 for the training set (for internal validation) and 0.71 for the test set (for external validation) of the nomogram prediction model, which showed a good predictive ability for patients in different survival times. The RF model also performed well, the C-index was 0.74 for the test set, and the AUC was 0.74.Conclusions: The study found some new risk factors associated with the FOG including a lower degree of tremor symptom, unexplained weight loss, and a higher degree of fatigue through a longitudinal study, and constructed relatively acceptable prediction models.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3898 ◽  
Author(s):  
Nader Naghavi ◽  
Aaron Miller ◽  
Eric Wade

Freezing of gait (FoG) is a common motor symptom in patients with Parkinson’s disease (PD). FoG impairs gait initiation and walking and increases fall risk. Intelligent external cueing systems implementing FoG detection algorithms have been developed to help patients recover gait after freezing. However, predicting FoG before its occurrence enables preemptive cueing and may prevent FoG. Such prediction remains challenging given the relative infrequency of freezing compared to non-freezing events. In this study, we investigated the ability of individual and ensemble classifiers to predict FoG. We also studied the effect of the ADAptive SYNthetic (ADASYN) sampling algorithm and classification cost on classifier performance. Eighteen PD patients performed a series of daily walking tasks wearing accelerometers on their ankles, with nine experiencing FoG. The ensemble classifier formed by Support Vector Machines, K-Nearest Neighbors, and Multi-Layer Perceptron using bagging techniques demonstrated highest performance (F1 = 90.7) when synthetic FoG samples were added to the training set and class cost was set as twice that of normal gait. The model identified 97.4% of the events, with 66.7% being predicted. This study demonstrates our algorithm’s potential for accurate prediction of gait events and the provision of preventive cueing in spite of limited event frequency.


2020 ◽  
Vol 57 (9) ◽  
pp. 617-623 ◽  
Author(s):  
Dheeraj Reddy Bobbili ◽  
Peter Banda ◽  
Rejko Krüger ◽  
Patrick May

BackgroundParkinson’s disease (PD) is a neurodegenerative disorder with complex genetic architecture. Besides rare mutations in high-risk genes related to monogenic familial forms of PD, multiple variants associated with sporadic PD were discovered via association studies.MethodsWe studied the whole-exome sequencing data of 340 PD cases and 146 ethnically matched controls from the Parkinson’s Progression Markers Initiative (PPMI) and performed burden analysis for different rare variant classes. Disease prediction models were built based on clinical, non-clinical and genetic features, including both common and rare variants, and two machine learning methods.ResultsWe observed a significant exome-wide burden of singleton loss-of-function variants (corrected p=0.037). Overall, no exome-wide burden of rare amino acid changing variants was detected. Finally, we built a disease prediction model combining singleton loss-of-function variants, a polygenic risk score based on common variants, and family history of PD as features and reached an area under the curve of 0.703 (95% CI 0.698 to 0.708). By incorporating a rare variant feature, our model increased the performance of the state-of-the-art classification model for the PPMI dataset, which reached an area under the curve of 0.639 based on common variants alone.ConclusionThe main finding of this study is to highlight the contribution of singleton loss-of-function variants to the complex genetics of PD and that disease risk prediction models combining singleton and common variants can improve models built solely on common variants.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1919
Author(s):  
Bochen Li ◽  
Zhiming Yao ◽  
Jianguo Wang ◽  
Shaonan Wang ◽  
Xianjun Yang ◽  
...  

Freezing of gait (FOG) is a paroxysmal dyskinesia, which is common in patients with advanced Parkinson’s disease (PD). It is an important cause of falls in PD patients and is associated with serious disability. In this study, we implemented a novel FOG detection system using deep learning technology. The system takes multi-channel acceleration signals as input, uses one-dimensional deep convolutional neural network to automatically learn feature representations, and uses recurrent neural network to model the temporal dependencies between feature activations. In order to improve the detection performance, we introduced squeeze-and-excitation blocks and attention mechanism into the system, and used data augmentation to eliminate the impact of imbalanced datasets on model training. Experimental results show that, compared with the previous best results, the sensitivity and specificity obtained in 10-fold cross-validation evaluation were increased by 0.017 and 0.045, respectively, and the equal error rate obtained in leave-one-subject-out cross-validation evaluation was decreased by 1.9%. The time for detection of a 256 data segment is only 0.52 ms. These results indicate that the proposed system has high operating efficiency and excellent detection performance, and is expected to be applied to FOG detection to improve the automation of Parkinson’s disease diagnosis and treatment.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 614
Author(s):  
Luigi Borzì ◽  
Ivan Mazzetta ◽  
Alessandro Zampogna ◽  
Antonio Suppa ◽  
Gabriella Olmo ◽  
...  

Freezing of gait (FOG) is one of the most troublesome symptoms of Parkinson’s disease, affecting more than 50% of patients in advanced stages of the disease. Wearable technology has been widely used for its automatic detection, and some papers have been recently published in the direction of its prediction. Such predictions may be used for the administration of cues, in order to prevent the occurrence of gait freezing. The aim of the present study was to propose a wearable system able to catch the typical degradation of the walking pattern preceding FOG episodes, to achieve reliable FOG prediction using machine learning algorithms and verify whether dopaminergic therapy affects the ability of our system to detect and predict FOG. Methods: A cohort of 11 Parkinson’s disease patients receiving (on) and not receiving (off) dopaminergic therapy was equipped with two inertial sensors placed on each shin, and asked to perform a timed up and go test. We performed a step-to-step segmentation of the angular velocity signals and subsequent feature extraction from both time and frequency domains. We employed a wrapper approach for feature selection and optimized different machine learning classifiers in order to catch FOG and pre-FOG episodes. Results: The implemented FOG detection algorithm achieved excellent performance in a leave-one-subject-out validation, in patients both on and off therapy. As for pre-FOG detection, the implemented classification algorithm achieved 84.1% (85.5%) sensitivity, 85.9% (86.3%) specificity and 85.5% (86.1%) accuracy in leave-one-subject-out validation, in patients on (off) therapy. When the classification model was trained with data from patients on (off) and tested on patients off (on), we found 84.0% (56.6%) sensitivity, 88.3% (92.5%) specificity and 87.4% (86.3%) accuracy. Conclusions: Machine learning models are capable of predicting FOG before its actual occurrence with adequate accuracy. The dopaminergic therapy affects pre-FOG gait patterns, thereby influencing the algorithm’s effectiveness.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258544
Author(s):  
Scott Pardoel ◽  
Gaurav Shalin ◽  
Edward D. Lemaire ◽  
Jonathan Kofman ◽  
Julie Nantel

Freezing of gait (FOG) is an intermittent walking disturbance experienced by people with Parkinson’s disease (PD). Wearable FOG identification systems can improve gait and reduce the risk of falling due to FOG by detecting FOG in real-time and providing a cue to reduce freeze duration. However, FOG prediction and prevention is desirable. Datasets used to train machine learning models often generate ground truth FOG labels based on visual observation of specific lower limb movements (event-based definition) or an overall inability to walk effectively (period of gait disruption based definition). FOG definition ambiguity may affect model performance, especially with respect to multiple FOG in rapid succession. This research examined whether merging multiple freezes that occurred in rapid succession could improve FOG detection and prediction model performance. Plantar pressure and lower limb acceleration data were used to extract a feature set and train decision tree ensembles. FOG was labeled using an event-based definition. Additional datasets were then produced by merging FOG that occurred in rapid succession. A merging threshold was introduced where FOG that were separated by less than the merging threshold were merged into one episode. FOG detection and prediction models were trained for merging thresholds of 0, 1, 2, and 3 s. Merging slightly improved FOG detection model performance; however, for the prediction model, merging resulted in slightly later FOG identification and lower precision. FOG prediction models may benefit from using event-based FOG definitions and avoiding merging multiple FOG in rapid succession.


2014 ◽  
Vol 71 (9) ◽  
pp. 809-816 ◽  
Author(s):  
Milica Djuric-Jovicic ◽  
Nenad Jovicic ◽  
Sasa Radovanovic ◽  
Nikola Kresojevic ◽  
Vladimir Kostic ◽  
...  

Background/Aim. Postural impairments and gait disorders in Parkinson's disease (PD) affect limits of stability, impaire postural adjustment, and evoke poor responses to perturbation. In the later stage of the disease, some patients can suffer from episodic features such as freezing of gait (FOG). Objective gait assessment and monitoring progress of the disease can give clinicians and therapist important information about changes in gait pattern and potential gait deviations, in order to prevent concomitant falls. The aim of this study was to propose a method for identification of freezing episodes and gait disturbances in patients with PD. A wireless inertial sensor system can be used to provide follow-up of the treatment effects or progress of the disease. Methods. The system is simple for mounting a subject, comfortable, simple for installing and recording, reliable and provides high-quality sensor data. A total of 12 patients were recorded and tested. Software calculates various gait parameters that could be estimated. User friendly visual tool provides information about changes in gait characteristics, either in a form of spectrogram or by observing spatiotemporal parameters. Based on these parameters, the algorithm performs classification of strides and identification of FOG types. Results. The described stride classification was merged with an algorithm for stride reconstruction resulting in a useful graphical tool that allows clinicians to inspect and analyze subject?s movements. Conclusion. The described gait assessment system can be used for detection and categorization of gait disturbances by applying rule-based classification based on stride length, stride time, and frequency of the shank segment movements. The method provides an valuable graphical interface which is easy to interpret and provides clinicians and therapists with valuable information regarding the temporal changes in gait.


Sign in / Sign up

Export Citation Format

Share Document