scholarly journals Corrigendum: Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation

2019 ◽  
Vol 13 ◽  
Author(s):  
Pei-Pei Sun ◽  
Fu-Lun Tan ◽  
Zong Zhang ◽  
Yi-Han Jiang ◽  
Yang Zhao ◽  
...  
2018 ◽  
Author(s):  
Elise A. Piazza ◽  
Liat Hasenfratz ◽  
Uri Hasson ◽  
Casey Lew-Williams

AbstractInfancy is the foundational period for learning from adults, and the dynamics of the social environment have long been proposed as central to children’s development. Here we reveal a novel, highly naturalistic approach for studying live interactions between infants and adults. Using functional near-infrared spectroscopy (fNIRS), we simultaneously and continuously measured the brains of infants (9-15 months) and an adult while they communicated and played with each other in real time. We found that time-locked neural coupling within dyads was significantly greater when they interacted with each other than with control individuals. In addition, we found that both infant and adult brains continuously tracked the moment-to-moment fluctuations of mutual gaze, infant emotion, and adult speech prosody with high temporal precision. This investigation advances what is currently known about how the brains and behaviors of infants both shape and reflect those of adults during real-life communication.


2018 ◽  
Vol 31 (4) ◽  
pp. 623-639 ◽  
Author(s):  
Antonino Naro ◽  
Rocco Salvatore Calabrò ◽  
Antonino Leo ◽  
Margherita Russo ◽  
Demetrio Milardi ◽  
...  

2009 ◽  
Vol 02 (04) ◽  
pp. 423-430 ◽  
Author(s):  
TING LI ◽  
LI LI ◽  
QINGMING LUO ◽  
HUI GONG

Working memory is one of the most important functions in our brain, which has been widely studied with unreal-life measured technologies. A functional near-infrared spectroscopy (fNIRS) instrument with a portable and low-cost design is developed, which is capable of providing hemodynamic measurement associated with brain function in real-life situations. Using this instrument, we performed working memory studies involved in Chinese words encoding, verbal, and spatial stem recognition, which are mainly studied with other technologies. Our results show that fNIRS can well assess working memory activities, in comparison with the reported results mainly using other methodologies. Furthermore, we find that hemodynamic change in the prefrontal cortex during all working memory tasks is highly associated with subjects' behavioral data. fNIRS is shown to be a promising alternative to the current methodologies for studying or assessing functional brain activities in natural condition.


2019 ◽  
Vol 35 (2) ◽  
pp. 131-145
Author(s):  
Grzegorz Kolasa ◽  
Filip Rybakowski

Objectives. Functional near-infrared spectroscopy (fNIRS) is one of the fastest developing neuroimaging modalities. Features, such as non-invasiveness, simplicity of application and resistance to motion artefacts, allow to take measurements and to create scientific experiments imitating real life conditions. In this review, we want to focus on the potential of fNIRS in the fields of psychiatry, neurorehabilitation and physical exercise. Additionally, we present the advantages of fNIRS over other neuroimaging techniques like fMRI, PET and EEG/EMG. We also consider potential directions of development and challenges which emerge in front of the fNIRS society. Literature review. The main application in the discipline of neurorehabilitation is to monitor and to observe the repair mechanism of neurons after brain traumas. The non-invasiveness of infra-red light permits to investigate patients of both adult and child psychiatry. The utility of fNIRS as a diagnostic tool and a predictor is proven. Researchers are looking for functional abnormalities within the prefrontal cortex. fNIRS creates new possibilities in terms of exploration of the physical exercise. Recent articles consider which type of effort has the best effect on the hemodynamic response in the cortex. It seems that investigating the impact of the physical activity in group of psychiatric patients is an interesting direction. Conclusions. Currently, we are at the breakthrough in the fNIRS technology. The number of new studies, more precise methods of data analysis, and availability of good quality systems help us to better understand how to design scientific experiments properly and reliably measure the activity of the cerebral cortex.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mingming Zhang ◽  
Huibin Jia ◽  
Mengxue Zheng

Expectation of others’ cooperative behavior plays a core role in economic cooperation. However, the dynamic neural substrates of expectation of cooperation (hereafter EOC) are little understood. To fully understand EOC behavior in more natural social interactions, the present study employed functional near-infrared spectroscopy (fNIRS) hyperscanning to simultaneously measure pairs of participants’ brain activations in a modified prisoner’s dilemma game (PDG). The data analysis revealed the following results. Firstly, under the high incentive condition, team EOC behavior elicited higher interbrain synchrony (IBS) in the right inferior frontal gyrus (rIFG) than individual EOC behavior. Meanwhile, the IBS in the IFG could predict the relationship between empathy/agreeableness and EOC behavior, and this prediction role was modulated by social environmental cues. These results indicate the involvement of the human mirror neuron system (MNS) in the EOC behavior and the different neural substrates between team EOC and individual EOC, which also conform with theory that social behavior was affected by internal (i.e., empathy/agreeableness) and external factors (i.e., incentive). Secondly, female dyads exhibited a higher IBS value of cooperative expectation than male dyads in the team EOC than the individual EOC in the dorsal medial prefrontal cortex (DMPFC), while in the individual EOC stage, the coherence value of female dyads was significantly higher than that of male dyads under the low incentive reward condition in the rIFG. These sex effects thus provide presumptive evidence that females are more sensitive to environmental cues and also suggest that during economic social interaction, females’ EOC behavior depends on more social cognitive abilities. Overall, these results raise intriguing questions for future research on human cooperative behaviors.


2021 ◽  
Vol 11 ◽  
Author(s):  
Sooah Jang ◽  
JongKwan Choi ◽  
Jooyoung Oh ◽  
Jungyeon Yeom ◽  
Narae Hong ◽  
...  

Virtual reality (VR) neuropsychological tests have emerged as a method to explore drug effects in real-life contexts in attention deficit hyperactivity disorder (ADHD) children. Functional near-infrared spectroscopy (fNIRS) is a useful tool to measure brain activity during VR tasks in ADHD children with motor restlessness. The present study aimed to explore the acute effects of methylphenidate (MPH) on behavioral performance and brain activity during a VR-based working memory task simulating real-life classroom settings in ADHD children. In total, 23 children with ADHD performed a VR n-back task before and 2 h after MPH administration concurrent with measurements of oxygenated hemoglobin signal changes with fNIRS. Altogether, 12 healthy control (HC) subjects participated in the same task but did not receive MPH treatment. Reaction time (RT) was shortened after MPH treatment in the 1-back condition, but changes in brain activation were not observed. In the 2-back condition, activation of the left dorsolateral prefrontal cortex (DLPFC) and bilateral medial prefrontal cortex (mPFC) was decreased alongside behavioral changes such as shorter RT, lower RT variability, and higher accuracy after MPH administration. Bilateral mPFC activation in the 2-back condition inversely correlated with task accuracy in the pre-MPH condition; this inverse correlation was not observed after MPH administration. In ADHD children, deactivation of the default mode network mediated by mPFC reduced during high working memory load, which was restored through MPH treatment. Our results suggest that the combination of VR classroom tasks and fNIRS examination makes it easy to assess drug effects on brain activity in ADHD children in settings simulating real-life.


Sign in / Sign up

Export Citation Format

Share Document