scholarly journals Multisensory Integration in Stroke Patients: A Theoretical Approach to Reinterpret Upper-Limb Proprioceptive Deficits and Visual Compensation

2021 ◽  
Vol 15 ◽  
Author(s):  
Jules Bernard-Espina ◽  
Mathieu Beraneck ◽  
Marc A. Maier ◽  
Michele Tagliabue

For reaching and grasping, as well as for manipulating objects, optimal hand motor control arises from the integration of multiple sources of sensory information, such as proprioception and vision. For this reason, proprioceptive deficits often observed in stroke patients have a significant impact on the integrity of motor functions. The present targeted review attempts to reanalyze previous findings about proprioceptive upper-limb deficits in stroke patients, as well as their ability to compensate for these deficits using vision. Our theoretical approach is based on two concepts: first, the description of multi-sensory integration using statistical optimization models; second, on the insight that sensory information is not only encoded in the reference frame of origin (e.g., retinal and joint space for vision and proprioception, respectively), but also in higher-order sensory spaces. Combining these two concepts within a single framework appears to account for the heterogeneity of experimental findings reported in the literature. The present analysis suggests that functional upper limb post-stroke deficits could not only be due to an impairment of the proprioceptive system per se, but also due to deficiencies of cross-references processing; that is of the ability to encode proprioceptive information in a non-joint space. The distinction between purely proprioceptive or cross-reference-related deficits can account for two experimental observations: first, one and the same patient can perform differently depending on specific proprioceptive assessments; and a given behavioral assessment results in large variability across patients. The distinction between sensory and cross-reference deficits is also supported by a targeted literature review on the relation between cerebral structure and proprioceptive function. This theoretical framework has the potential to lead to a new stratification of patients with proprioceptive deficits, and may offer a novel approach to post-stroke rehabilitation.

2020 ◽  
pp. 1-11
Author(s):  
Gloria Perini ◽  
Rita Bertoni ◽  
Rune Thorsen ◽  
Ilaria Carpinella ◽  
Tiziana Lencioni ◽  
...  

BACKGROUND: Functional recovery of the plegic upper limb in post-stroke patients may be enhanced by sequentially applying a myoelectrically controlled FES (MeCFES), which allows the patient to voluntarily control the muscle contraction during a functional movement and robotic therapy which allows many repetitions of movements. OBJECTIVE: Evaluate the efficacy of MeCFES followed by robotic therapy compared to standard care arm rehabilitation for post-stroke patients. METHODS: Eighteen stroke subjects (onset ⩾ 3 months, age 60.1 ± 15.5) were recruited and randomized to receive an experimental combination of MeCFES during task-oriented reaching followed by robot therapy (MRG) or same intensity conventional rehabilitation care (CG) aimed at the recovery of the upper limb (20 sessions/45 minutes). Change was evaluated through Fugl-Meyer upperextremity (FMA-UE), Reaching Performance Scale and Box and Block Test. RESULTS: The experimental treatment resulted in higher improvement on the FMA-UE compared with CG (P= 0.04), with a 10 point increase following intervention. Effect sizes were moderate in favor of the MRG group on FMA-UE, FMA-UE proximal and RPS (0.37–0.56). CONCLUSIONS: Preliminary findings indicate that a combination of MeCFES and robotic treatment may be more effective than standard care for recovery of the plegic arm in persons > 3 months after stroke. The mix of motor learning techniques may be important for successful rehabilitation of arm function.


2015 ◽  
Vol 37 (5) ◽  
pp. 434-440 ◽  
Author(s):  
Yanna Tong ◽  
Brian Forreider ◽  
Xinting Sun ◽  
Xiaokun Geng ◽  
Weidong Zhang ◽  
...  

BMJ Open ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. e016566
Author(s):  
Eline C C van Lieshout ◽  
Johanna M A Visser-Meily ◽  
Sebastiaan F W Neggers ◽  
H Bart van der Worp ◽  
Rick M Dijkhuizen

IntroductionMany patients with stroke have moderate to severe long-term sensorimotor impairments, often including inability to execute movements of the affected arm or hand. Limited recovery from stroke may be partly caused by imbalanced interaction between the cerebral hemispheres, with reduced excitability of the ipsilesional motor cortex while excitability of the contralesional motor cortex is increased. Non-invasive brain stimulation with inhibitory repetitive transcranial magnetic stimulation (rTMS) of the contralesional hemisphere may aid in relieving a post-stroke interhemispheric excitability imbalance, which could improve functional recovery. There are encouraging effects of theta burst stimulation (TBS), a form of TMS, in patients with chronic stroke, but evidence on efficacy and long-term effects on arm function of contralesional TBS in patients with subacute hemiparetic stroke is lacking.Methods and analysisIn a randomised clinical trial, we will assign 60 patients with a first-ever ischaemic stroke in the previous 7–14 days and a persistent paresis of one arm to 10 sessions of real stimulation with TBS of the contralesional primary motor cortex or to sham stimulation over a period of 2 weeks. Both types of stimulation will be followed by upper limb training. A subset of patients will undergo five MRI sessions to assess post-stroke brain reorganisation. The primary outcome measure will be the upper limb function score, assessed from grasp, grip, pinch and gross movements in the action research arm test, measured at 3 months after stroke. Patients will be blinded to treatment allocation. The primary outcome at 3 months will also be assessed in a blinded fashion.Ethics and disseminationThe study has been approved by the Medical Research Ethics Committee of the University Medical Center Utrecht, The Netherlands. The results will be disseminated through (open access) peer-reviewed publications, networks of scientists, professionals and the public, and presented at conferences.Trial registration numberNTR6133


Brain Injury ◽  
2011 ◽  
Vol 25 (5) ◽  
pp. 496-502 ◽  
Author(s):  
Wataru Kakuda ◽  
Masahiro Abo ◽  
Kazushige Kobayashi ◽  
Ryo Momosaki ◽  
Aki Yokoi ◽  
...  

2019 ◽  
Vol 9 (8) ◽  
pp. 1620 ◽  
Author(s):  
Bai ◽  
Song ◽  
Li

In order to improve the convenience and practicability of home rehabilitation training for post-stroke patients, this paper presents a cloud-based upper limb rehabilitation system based on motion tracking. A 3-dimensional reachable workspace virtual game (3D-RWVG) was developed to achieve meaningful home rehabilitation training. Five movements were selected as the criteria for rehabilitation assessment. Analysis was undertaken of the upper limb performance parameters: relative surface area (RSA), mean velocity (MV), logarithm of dimensionless jerk (LJ) and logarithm of curvature (LC). A two-headed convolutional neural network (TCNN) model was established for the assessment. The experiment was carried out in the hospital. The results show that the RSA, MV, LC and LJ could reflect the upper limb motor function intuitively from the graphs. The accuracy of the TCNN models is 92.6%, 80%, 89.5%, 85.1% and 87.5%, respectively. A therapist could check patient training and assessment information through the cloud database and make a diagnosis. The system can realize home rehabilitation training and assessment without the supervision of a therapist, and has the potential to become an effective home rehabilitation system.


2021 ◽  
Vol 25 (3) ◽  
Author(s):  
Zuzanna Olszewska ◽  
Elżbieta Mirek ◽  
Kinga Opoka-Kubica ◽  
Szymon Pasiut Szymon Pasiut ◽  
Magdalena Filip

Introduction: Stroke is a serious health problem in the modern population. Spasticity is one of the consequences of stroke and affects about 30% of people. Increased muscle tone affects postural control disorders. Due to the specificity of spasticity, therapy in post-stroke patients is a challenge for neurological physiotherapy. Therefore, it requires the development of appropriate management standards . Study aim: The aim of the study was to evaluate the effectiveness of 3 combination therapy cycles based on botulinum toxin injection and physiotherapy for muscle tone, muscle strength and postural stability in post-stroke patients qualified for the spasticity treatment programme of the lower and upper limbs. Material and methods: The pilot study involved 12 patients (6 from the lower limb and 6 from the upper limb programme). The 1-year combination therapy programmes included 3 botulinum toxin injections and 3 weeks of physiotherapy after each injection. Clinical evaluation was conducted before and after the 1-year observation cycle. The results were evaluated using: MAS (Modified Ashworth Scale), MRC (Medical Research Council Scale) and posture stability test on a balance platform (BiodexSD). Results: A decrease was observed in muscle tone of the lower and upper limbs, as well as an increase in muscular strength of the upper limb. However, there were no noted statistical significance of the studied parameters. Conclusions: Physiotherapy in combination with the botulinum toxin is an important element of improvement in post-stroke patients. However, further research is needed to explicitly confirm its effectiveness.


2021 ◽  
Author(s):  
Gilles Dusfour ◽  
Denis Mottet ◽  
Makii Muthalib ◽  
Isabelle Laffont ◽  
Karima K.A. Bakhti

Abstract Background In post-stroke patients it is unclear which wrist actimetry biomarkers to use to estimate the degree of upper limb hemiparesis. The objective of this study was to develop a general and objective framework for monitoring hemiparetic patients in their home environment via different biomarkers based on 7 days of actimetry data. A secondary objective was to use all of these biomarkers to better understand the mechanism for potential non-use of the paretic upper limb. Methods Accelerometers were worn continuously for a period of 7 days on both wrists of 10 post-stroke hemiparetic patients as well as 6 healthy subjects. Various wrist actimetry biomarkers were calculated, including the Jerk ratio 50 (JR50, cumulative probability that the Jerk Ratio is between 0 and 0.5), absolute and relative amounts of functional use of movements of the upper limbs (FuncUse and FuncUseR) and absolute and relative velocities of the upper limbs during functional use (VUL and VULR). For each biomarker, the values of stroke and healthy groups were compared. The correlations between all the biomarkers were studied. Results We studied 10 participants with mild-to-moderate chronic hemiparesis and 6 healthy control participants. FuncUse and VUL of the paretic upper limb of stroke patients were significantly lower than in the non-dominant upper limb of healthy subjects. Similarly, FuncUseR (paretic/non-paretic vs non-dominant/dominant), JR and VULR are significantly lower in stroke patients than in healthy subjects. FuncUseR, VULR and JR50 seem to be complementary biomarkers for monitoring patient strokes. Conclusion The stroke patients do not seem to compensate for the decrease in functional movement on the paretic side by an increase on the non-paretic side. The speed of execution of functional movements on the paretic side could be the limiting factor to a normal use of the paretic upper limb. A thorough clinical study is needed to identify the limiting factors. In conclusion, this study for the first time has shown actimetry is a robust and non-obtrusive lightweight technology for continuously acquiring objective upper limb data of paretic arm use/ non-use over an extended period in a home environment for monitoring stroke patients.


Sign in / Sign up

Export Citation Format

Share Document