scholarly journals Age-Related Transcriptional Deregulation of Genes Coding Synaptic Proteins in Alzheimer's Disease Murine Model: Potential Neuroprotective Effect of Fingolimod

2021 ◽  
Vol 14 ◽  
Author(s):  
Henryk Jęśko ◽  
Iga Wieczorek ◽  
Przemysław Leonard Wencel ◽  
Magdalena Gąssowska-Dobrowolska ◽  
Walter J. Lukiw ◽  
...  

Alzheimer's disease (AD) induces time-dependent changes in sphingolipid metabolism, which may affect transcription regulation and neuronal phenotype. We, therefore, analyzed the influence of age, amyloid β precursor protein (AβPP), and the clinically approved, bioavailable sphingosine-1-phosphate receptor modulator fingolimod (FTY720) on the expression of synaptic proteins. RNA was isolated, reverse-transcribed, and subjected to real-time PCR. Expression of mutant (V717I) AβPP led to few changes at 3 months of age but reduced multiple mRNA coding for synaptic proteins in a 12-month-old mouse brain. Complexin 1 (Cplx1), SNAP25 (Snap25), syntaxin 1A (Stx1a), neurexin 1 (Nrxn1), neurofilament light (Nefl), and synaptotagmin 1 (Syt1) in the hippocampus, and VAMP1 (Vamp1) and neurexin 1 (Nrxn1) in the cortex were all significantly reduced in 12-month-old mice. Post mortem AD samples from the human hippocampus and cortex displayed lower expression of VAMP, synapsin, neurofilament light (NF-L) and synaptophysin. The potentially neuroprotective FTY720 reversed most AβPP-induced changes in gene expression (Cplx1, Stx1a, Snap25, and Nrxn1) in the 12-month-old hippocampus, which is thought to be most sensitive to early neurotoxic insults, but it only restored Vamp1 in the cortex and had no influence in 3-month-old brains. Further study may reveal the potential usefulness of FTY720 in the modulation of deregulated neuronal phenotype in AD brains.

2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Donovan A. McGrowder ◽  
Fabian Miller ◽  
Kurt Vaz ◽  
Chukwuemeka Nwokocha ◽  
Cameil Wilson-Clarke ◽  
...  

Alzheimer’s disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer’s disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer’s disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer’s disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer’s disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.


Antioxidants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 177 ◽  
Author(s):  
Natalia A. Muraleva ◽  
Oyuna S. Kozhevnikova ◽  
Anzhela Z. Fursova ◽  
Nataliya G. Kolosova

Age-related macular degeneration (AMD) is a major cause of irreversible visual impairment and blindness in developed countries, and the molecular pathogenesis of AMD is poorly understood. Recent studies strongly indicate that amyloid β (Aβ) accumulation —found in the brain and a defining feature of Alzheimer’s disease—also forms in the retina in both Alzheimer’s disease and AMD. The reason why highly neurotoxic proteins of consistently aggregate in the aging retina, and to what extent they contribute to AMD, remains to be fully addressed. Nonetheless, the hypothesis that Aβ is a therapeutic target in AMD is debated. Here, we showed that long-term treatment with SkQ1 (250 nmol/[kg body weight] daily from the age of 1.5 to 22 months) suppressed the development of AMD-like pathology in senescence-accelerated OXYS rats by reducing the level of Aβ and suppressing the activity of mTOR in the retina. Inhibition of mTOR signaling activity, which plays key roles in aging and age-related diseases, can be considered a new mechanism of the prophylactic effect of SkQ1. It seems probable that dietary supplementation with mitochondria-targeted antioxidant SkQ1 can be a good prevention strategy to maintain eye health and possibly a treatment of AMD.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Oskar Hansson ◽  
Martina Svensson ◽  
Anna-Märta Gustavsson ◽  
Emelie Andersson ◽  
Yiyi Yang ◽  
...  

Abstract Background Physical activity might reduce the risk of developing dementia. However, it is still unclear whether the protective effect differs depending on the subtype of dementia. We aimed to investigate if midlife physical activity affects the development of vascular dementia (VaD) and Alzheimer’s disease (AD) differently in two large study populations with different designs. Methods Using a prospective observational design, we studied whether long-distance skiers of the Swedish Vasaloppet (n = 197,685) exhibited reduced incidence of VaD or AD compared to matched individuals from the general population (n = 197,684) during 21 years of follow-up (median 10, interquartile range (IQR) 5–15 years). Next, we studied the association between self-reported physical activity, stated twice 5 years apart, and incident VaD and AD in 20,639 participants in the Swedish population-based Malmo Diet and Cancer Study during 18 years of follow-up (median 15, IQR 14–17 years). Finally, we used a mouse model of AD and studied brain levels of amyloid-β, synaptic proteins, and cognitive function following 6 months of voluntary wheel running. Results Vasaloppet skiers (median age 36.0 years [IQR 29.0–46.0], 38% women) had lower incidence of all-cause dementia (adjusted hazard ratio (HR) 0.63, 95% CI 0.52–0.75) and VaD (adjusted HR 0.49, 95% CI 0.33–0.73), but not AD, compared to non-skiers. Further, faster skiers exhibited a reduced incidence of VaD (adjusted HR 0.38, 95% CI 0.16–0.95), but not AD or all-cause dementia compared to slower skiers. In the Malmo Diet and Cancer Study (median age 57.5 years [IQR 51.0–63.8], 60% women), higher physical activity was associated with reduced incidence of VaD (adjusted HR 0.65, 95% CI 0.49-0.87), but not AD nor all-cause dementia. These findings were also independent of APOE-ε4 genotype. In AD mice, voluntary running did not improve memory, amyloid-β, or synaptic proteins. Conclusions Our results indicate that physical activity in midlife is associated with lower incidence of VaD. Using three different study designs, we found no significant association between physical activity and subsequent development of AD.


2020 ◽  
Vol 14 ◽  
Author(s):  
Antonio Munafò ◽  
Chiara Burgaletto ◽  
Giulia Di Benedetto ◽  
Marco Di Mauro ◽  
Rosaria Di Mauro ◽  
...  

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder characterized by cognitive decline and by the presence of amyloid β plaques and neurofibrillary tangles in the brain. Despite recent advances in understanding its pathophysiological mechanisms, to date, there are no disease-modifying therapeutic options, to slow or halt the evolution of neurodegenerative processes in AD. Current pharmacological treatments only transiently mitigate the severity of symptoms, with modest or null overall improvement. Emerging evidence supports the concept that AD is affected by the impaired ability of the immune system to restrain the brain’s pathology. Deep understanding of the relationship between the nervous and the immune system may provide a novel arena to develop effective and safe drugs for AD treatment. Considering the crucial role of inflammatory/immune pathways in AD, here we discuss the current status of the immuno-oncological, immunomodulatory and anti-TNF-α drugs which are being used in preclinical studies or in ongoing clinical trials by means of the drug-repositioning approach.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 229 ◽  
Author(s):  
Wojciech Grodzicki ◽  
Katarzyna Dziendzikowska

Neurodegeneration is a feature of many debilitating, incurable age-dependent diseases that affect the nervous system and represent a major threat to the health of elderly persons. Because of the ongoing process of aging experienced by modern societies, the increasing prevalence of neurodegenerative diseases is becoming a global public health concern. A major cause of age-related dementia is Alzheimer’s disease (AD). Currently, there are no effective therapies to slow, stop, or reverse the progression of this disease. However, many studies have suggested that modification of lifestyle factors, such as the introduction of an appropriate diet, can delay or prevent the onset of this disorder. Diet is currently considered to be a crucial factor in controlling health and protecting oneself against oxidative stress and chronic inflammation, and thus against chronic degenerative diseases. A large number of bioactive food compounds may influence the pathological mechanisms underlying AD. Among them, phenolic compounds, omega-3 fatty acids, fat-soluble vitamins, isothiocyanates, and carotenoids seem to be promising. They act not only as antioxidant and anti-inflammatory agents, but also as active modulators of the pathological molecular mechanisms that play a role in AD development, including the formation of amyloid plaques and tau tangles, the main hallmarks of AD pathology. In vivo animal model studies as well as clinical and epidemiological research suggest that nutritional intervention has a positive effect on the health of older people and may prevent age-related cognitive decline, especially when the diet contains more than one bioactive nutrient. The Mediterranean diet and in particular its combination with Dietary Approaches to Stop Hypertension, which is called the MIND diet, are nutritional patterns based on many products rich in bioactive compounds that appear to be the most effective in preventing neurodegeneration. The present review gathers evidence that supports the neuroprotective effect of bioactive substances.


Brain ◽  
2015 ◽  
Vol 139 (2) ◽  
pp. 509-525 ◽  
Author(s):  
Andreas Müller-Schiffmann ◽  
Arne Herring ◽  
Laila Abdel-Hafiz ◽  
Aisa N. Chepkova ◽  
Sandra Schäble ◽  
...  

Abstract Despite amyloid plaques, consisting of insoluble, aggregated amyloid-β peptides, being a defining feature of Alzheimer’s disease, their significance has been challenged due to controversial findings regarding the correlation of cognitive impairment in Alzheimer’s disease with plaque load. The amyloid cascade hypothesis defines soluble amyloid-β oligomers, consisting of multiple amyloid-β monomers, as precursors of insoluble amyloid-β plaques. Dissecting the biological effects of single amyloid-β oligomers, for example of amyloid-β dimers, an abundant amyloid-β oligomer associated with clinical progression of Alzheimer’s disease, has been difficult due to the inability to control the kinetics of amyloid-β multimerization. For investigating the biological effects of amyloid-β dimers, we stabilized amyloid-β dimers by an intermolecular disulphide bridge via a cysteine mutation in the amyloid-β peptide (Aβ-S8C) of the amyloid precursor protein. This construct was expressed as a recombinant protein in cells and in a novel transgenic mouse, termed tgDimer mouse. This mouse formed constant levels of highly synaptotoxic soluble amyloid-β dimers, but not monomers, amyloid-β plaques or insoluble amyloid-β during its lifespan. Accordingly, neither signs of neuroinflammation, tau hyperphosphorylation or cell death were observed. Nevertheless, these tgDimer mice did exhibit deficits in hippocampal long-term potentiation and age-related impairments in learning and memory, similar to what was observed in classical Alzheimer’s disease mouse models. Although the amyloid-β dimers were unable to initiate the formation of insoluble amyloid-β aggregates in tgDimer mice, after crossbreeding tgDimer mice with the CRND8 mouse, an amyloid-β plaque generating mouse model, Aβ-S8C dimers were sequestered into amyloid-β plaques, suggesting that amyloid-β plaques incorporate neurotoxic amyloid-β dimers that by themselves are unable to self-assemble. Our results suggest that within the fine interplay between different amyloid-β species, amyloid-β dimer neurotoxic signalling, in the absence of amyloid-β plaque pathology, may be involved in causing early deficits in synaptic plasticity, learning and memory that accompany Alzheimer’s disease. 10.1093/brain/awv355_video_abstract awv355_video_abstract


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Muhammad Aslam ◽  
Ali Akbar Sial

Malva parviflora L. possesses significant antioxidant potential. This study was conducted to evaluate the neuroprotective effect of ethanol extract of the leaves of Malva parviflora against amyloid-β- (Aβ-) mediated Alzheimer’s disease. In Morris water maze model, the extract significantly restored the defected memory of amyloid-β injected mice (P<0.01). The reduced levels of brain antioxidant enzymes such as glutathione peroxidase, glutathione reductase, catalase, and superoxide dismutase were also restored significantly to similar levels as seen in normal control mice (P<0.01). The levels of lipid peroxidase were decreased significantly in treatment group mice when compared to Alzheimer group mice (P<0.01). So, this study showed that ethanol extract of the leaves of Malva parviflora possesses neuroprotective activity in mice.


Brain ◽  
2020 ◽  
Author(s):  
Joana B Pereira ◽  
Shorena Janelidze ◽  
Rik Ossenkoppele ◽  
Hlin Kvartsberg ◽  
Ann Brinkmalm ◽  
...  

Abstract It is currently unclear how amyloid-β and tau deposition are linked to changes in synaptic function and axonal structure over the course of Alzheimer’s disease. Here, we assessed these relationships by measuring presynaptic (synaptosomal-associated protein 25, SNAP25; growth-associated protein 43, GAP43), postsynaptic (neurogranin, NRGN) and axonal (neurofilament light chain) markers in the CSF of individuals with varying levels of amyloid-β and tau pathology based on 18F-flutemetamol PET and 18F-flortaucipir PET. In addition, we explored the relationships between synaptic and axonal markers with cognition as well as functional and anatomical brain connectivity markers derived from resting-state functional MRI and diffusion tensor imaging. We found that the presynaptic and postsynaptic markers SNAP25, GAP43 and NRGN are elevated in early Alzheimer’s disease i.e. in amyloid-β-positive individuals without evidence of tau pathology. These markers were associated with greater amyloid-β pathology, worse memory and functional changes in the default mode network. In contrast, neurofilament light chain was abnormal in later disease stages, i.e. in individuals with both amyloid-β and tau pathology, and correlated with more tau and worse global cognition. Altogether, these findings support the hypothesis that amyloid-β and tau might have differential downstream effects on synaptic and axonal function in a stage-dependent manner, with amyloid-related synaptic changes occurring first, followed by tau-related axonal degeneration.


Sign in / Sign up

Export Citation Format

Share Document