scholarly journals The Role of Selected Bioactive Compounds in the Prevention of Alzheimer’s Disease

Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 229 ◽  
Author(s):  
Wojciech Grodzicki ◽  
Katarzyna Dziendzikowska

Neurodegeneration is a feature of many debilitating, incurable age-dependent diseases that affect the nervous system and represent a major threat to the health of elderly persons. Because of the ongoing process of aging experienced by modern societies, the increasing prevalence of neurodegenerative diseases is becoming a global public health concern. A major cause of age-related dementia is Alzheimer’s disease (AD). Currently, there are no effective therapies to slow, stop, or reverse the progression of this disease. However, many studies have suggested that modification of lifestyle factors, such as the introduction of an appropriate diet, can delay or prevent the onset of this disorder. Diet is currently considered to be a crucial factor in controlling health and protecting oneself against oxidative stress and chronic inflammation, and thus against chronic degenerative diseases. A large number of bioactive food compounds may influence the pathological mechanisms underlying AD. Among them, phenolic compounds, omega-3 fatty acids, fat-soluble vitamins, isothiocyanates, and carotenoids seem to be promising. They act not only as antioxidant and anti-inflammatory agents, but also as active modulators of the pathological molecular mechanisms that play a role in AD development, including the formation of amyloid plaques and tau tangles, the main hallmarks of AD pathology. In vivo animal model studies as well as clinical and epidemiological research suggest that nutritional intervention has a positive effect on the health of older people and may prevent age-related cognitive decline, especially when the diet contains more than one bioactive nutrient. The Mediterranean diet and in particular its combination with Dietary Approaches to Stop Hypertension, which is called the MIND diet, are nutritional patterns based on many products rich in bioactive compounds that appear to be the most effective in preventing neurodegeneration. The present review gathers evidence that supports the neuroprotective effect of bioactive substances.

2017 ◽  
Vol 59 (4) ◽  
pp. 1415-1426 ◽  
Author(s):  
Michail B. Evgen’ev ◽  
George S. Krasnov ◽  
Inna V. Nesterova ◽  
David G. Garbuz ◽  
Vadim L. Karpov ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5113
Author(s):  
Agnieszka Rybak-Wolf ◽  
Mireya Plass

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder that heavily burdens healthcare systems worldwide. There is a significant requirement to understand the still unknown molecular mechanisms underlying AD. Current evidence shows that two of the major features of AD are transcriptome dysregulation and altered function of RNA binding proteins (RBPs), both of which lead to changes in the expression of different RNA species, including microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs). In this review, we will conduct a comprehensive overview of how RNA dynamics are altered in AD and how this leads to the differential expression of both short and long RNA species. We will describe how RBP expression and function are altered in AD and how this impacts the expression of different RNA species. Furthermore, we will also show how changes in the abundance of specific RNA species are linked to the pathology of AD.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Shaun Cade ◽  
Xin-Fu Zhou ◽  
Larisa Bobrovskaya

Abstract Alzheimer’s disease is a neurodegenerative condition that is potentially mediated by synaptic dysfunction before the onset of cognitive impairments. The disease mostly affects elderly people and there is currently no therapeutic which halts its progression. One therapeutic strategy for Alzheimer’s disease is to regenerate lost synapses by targeting mechanisms involved in synaptic plasticity. This strategy has led to promising drug candidates in clinical trials, but further progress needs to be made. An unresolved problem of Alzheimer’s disease is to identify the molecular mechanisms that render the aged brain susceptible to synaptic dysfunction. Understanding this susceptibility may identify drug targets which could halt, or even reverse, the disease’s progression. Brain derived neurotrophic factor is a neurotrophin expressed in the brain previously implicated in Alzheimer’s disease due to its involvement in synaptic plasticity. Low levels of the protein increase susceptibility to the disease and post-mortem studies consistently show reductions in its expression. A desirable therapeutic approach for Alzheimer’s disease is to stimulate the expression of brain derived neurotrophic factor and potentially regenerate lost synapses. However, synthesis and secretion of the protein are regulated by complex activity-dependent mechanisms within neurons, which makes this approach challenging. Moreover, the protein is synthesised as a precursor which exerts the opposite effect of its mature form through the neurotrophin receptor p75NTR. This review will evaluate current evidence on how age-related alterations in the synthesis, processing and signalling of brain derived neurotrophic factor may increase the risk of Alzheimer’s disease.


2020 ◽  
Vol 21 (6) ◽  
pp. 1989 ◽  
Author(s):  
Alessandro Rabbito ◽  
Maciej Dulewicz ◽  
Agnieszka Kulczyńska-Przybik ◽  
Barbara Mroczko

Alzheimer’s disease (AD) is one of the most frequent neurodegenerative diseases affecting more than 35 million people in the world, and its incidence is estimated to triple by 2050. Alzheimer’s disease is an age-related disease characterized by the progressive loss of memory and cognitive function, caused by the unstoppable neurodegeneration and brain atrophy. Current AD treatments only relieve the symptoms. The first molecular signs of the disease identified decades ago and were related to the tau neurofibrillary tangles and the β amyloid plaques. Despite the considerable progress in the diagnostic field, there is no certain knowledge of the specific biomarkers reflecting molecular mechanisms that trigger the symptoms of the disease. Therefore, there is an enormous need to find biomarkers useful for early diagnosis, before the first symptoms appear, and develop new therapeutic targets, which would guarantee improving patients’ quality of life. Researchers from all around the world are looking for biomarkers that can be identified in different biological fluids such as plasma, serum, and cerebrospinal fluid, specific for Alzheimer’s disease. In this review, we would like to resume some of the most interesting discovery in pathological mechanisms underlying Alzheimer’s disease and promising biomarkers.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 150 ◽  
Author(s):  
Qian Cai ◽  
Yu Young Jeong

Mitochondrial dysfunction is a central aspect of aging and neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. Mitochondria are the main cellular energy powerhouses, supplying most of ATP by oxidative phosphorylation, which is required to fuel essential neuronal functions. Efficient removal of aged and dysfunctional mitochondria through mitophagy, a cargo-selective autophagy, is crucial for mitochondrial maintenance and neuronal health. Mechanistic studies into mitophagy have highlighted an integrated and elaborate cellular network that can regulate mitochondrial turnover. In this review, we provide an updated overview of the recent discoveries and advancements on the mitophagy pathways and discuss the molecular mechanisms underlying mitophagy defects in Alzheimer’s disease and other age-related neurodegenerative diseases, as well as the therapeutic potential of mitophagy-enhancing strategies to combat these disorders.


2021 ◽  
Vol 14 ◽  
Author(s):  
Henryk Jęśko ◽  
Iga Wieczorek ◽  
Przemysław Leonard Wencel ◽  
Magdalena Gąssowska-Dobrowolska ◽  
Walter J. Lukiw ◽  
...  

Alzheimer's disease (AD) induces time-dependent changes in sphingolipid metabolism, which may affect transcription regulation and neuronal phenotype. We, therefore, analyzed the influence of age, amyloid β precursor protein (AβPP), and the clinically approved, bioavailable sphingosine-1-phosphate receptor modulator fingolimod (FTY720) on the expression of synaptic proteins. RNA was isolated, reverse-transcribed, and subjected to real-time PCR. Expression of mutant (V717I) AβPP led to few changes at 3 months of age but reduced multiple mRNA coding for synaptic proteins in a 12-month-old mouse brain. Complexin 1 (Cplx1), SNAP25 (Snap25), syntaxin 1A (Stx1a), neurexin 1 (Nrxn1), neurofilament light (Nefl), and synaptotagmin 1 (Syt1) in the hippocampus, and VAMP1 (Vamp1) and neurexin 1 (Nrxn1) in the cortex were all significantly reduced in 12-month-old mice. Post mortem AD samples from the human hippocampus and cortex displayed lower expression of VAMP, synapsin, neurofilament light (NF-L) and synaptophysin. The potentially neuroprotective FTY720 reversed most AβPP-induced changes in gene expression (Cplx1, Stx1a, Snap25, and Nrxn1) in the 12-month-old hippocampus, which is thought to be most sensitive to early neurotoxic insults, but it only restored Vamp1 in the cortex and had no influence in 3-month-old brains. Further study may reveal the potential usefulness of FTY720 in the modulation of deregulated neuronal phenotype in AD brains.


2020 ◽  
Vol 11 ◽  
Author(s):  
Md. Habibur Rahman ◽  
Rokeya Akter ◽  
Tanima Bhattacharya ◽  
Mohamed M. Abdel-Daim ◽  
Saad Alkahtani ◽  
...  

Alzheimer’s disease (AD) is a progressive cortex and hippocampal neurodegenerative disease which ultimately causes cognitively impaired decline in patients. The AD pathogen is a very complex process, including aggregation of Aβ (β-amyloid peptides), phosphorylation of tau-proteins, and chronic inflammation. Exactly, resveratrol, a polyphenol present in red wine, and many plants are indicated to show the neuroprotective effect on mechanisms mostly above. Resveratrol plays an important role in promotion of non-amyloidogenic cleavage of the amyloid precursor protein. It also enhances the clearance of amyloid beta-peptides and reduces the damage of neurons. Most experimental research on AD and resveratrol has been performed in many species, both in vitro and in vivo, during the last few years. Nevertheless, resveratrol’s effects are restricted by its bioavailability in the reservoir. Therefore, scientists have tried to improve its efficiency by using different methods. This review focuses on recent work done on the cell and animal cultures and also focuses on the neuroprotective molecular mechanisms of resveratrol. It also discusses about the therapeutic potential onto the treatment of AD.


2021 ◽  
Vol 14 (6) ◽  
pp. 515
Author(s):  
Vladimir Khavinson ◽  
Anastasiia Ilina ◽  
Nina Kraskovskaya ◽  
Natalia Linkova ◽  
Nina Kolchina ◽  
...  

KED and EDR peptides prevent dendritic spines loss in amyloid synaptotoxicity in in vitro model of Alzheimer’s disease (AD). The objective of this paper was to study epigenetic mechanisms of EDR and KED peptides’ neuroprotective effects on neuroplasticity and dendritic spine morphology in an AD mouse model. Daily intraperitoneal administration of the KED peptide in 5xFAD mice from 2 to 4 months of age at a concentration of 400 μg/kg tended to increase neuroplasticity. KED and EDR peptides prevented dendritic spine loss in 5xFAD-M mice. Their action’s possible molecular mechanisms were investigated by molecular modeling and docking of peptides in dsDNA, containing all possible combinations of hexanucleotide sequences. Similar DNA sequences were found in the lowest-energy complexes of the studied peptides with DNA in the classical B-form. EDR peptide has binding sites in the promoter region of CASP3, NES, GAP43, APOE, SOD2, PPARA, PPARG, GDX1 genes. Protein products of these genes are involved in AD pathogenesis. The neuroprotective effect of EDR and KED peptides in AD can be defined by their ability to prevent dendritic spine elimination and neuroplasticity impairments at the molecular epigenetic level.


2021 ◽  
Vol 14 (9) ◽  
pp. 890
Author(s):  
Saghar Rabiei Poor ◽  
Miren Ettcheto ◽  
Amanda Cano ◽  
Elena Sanchez-Lopez ◽  
Patricia Regina Manzine ◽  
...  

Alzheimer’s disease (AD) is one of the most devastating brain disorders. Currently, there are no effective treatments to stop the disease progression and it is becoming a major public health concern. Several risk factors are involved in the progression of AD, modifying neuronal circuits and brain cognition, and eventually leading to neuronal death. Among them, obesity and type 2 diabetes mellitus (T2DM) have attracted increasing attention, since brain insulin resistance can contribute to neurodegeneration. Consequently, AD has been referred to “type 3 diabetes” and antidiabetic medications such as intranasal insulin, glitazones, metformin or liraglutide are being tested as possible alternatives. Metformin, a first line antihyperglycemic medication, is a 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activator hypothesized to act as a geroprotective agent. However, studies on its association with age-related cognitive decline have shown controversial results with positive and negative findings. In spite of this, metformin shows positive benefits such as anti-inflammatory effects, accelerated neurogenesis, strengthened memory, and prolonged life expectancy. Moreover, it has been recently demonstrated that metformin enhances synaptophysin, sirtuin-1, AMPK, and brain-derived neuronal factor (BDNF) immunoreactivity, which are essential markers of plasticity. The present review discusses the numerous studies which have explored (1) the neuropathological hallmarks of AD, (2) association of type 2 diabetes with AD, and (3) the potential therapeutic effects of metformin on AD and preclinical models.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Teng Ma ◽  
Meng-Shan Tan ◽  
Jin-Tai Yu ◽  
Lan Tan

Alzheimer’s disease (AD) is the most common cause of dementia, but there is no effective therapy till now. The pathogenic mechanisms of AD are considerably complex, including Aβaccumulation, tau protein phosphorylation, oxidative stress, and inflammation. Exactly, resveratrol, a polyphenol in red wine and many plants, is indicated to show the neuroprotective effect on mechanisms mostly above. Recent years, there are numerous researches about resveratrol acting on AD in many models, both in vitro and in vivo. However, the effects of resveratrol are limited by its pool bioavailability; therefore researchers have been trying a variety of methods to improve the efficiency. This review summarizes the recent studies in cell cultures and animal models, mainly discusses the molecular mechanisms of the neuroprotective effects of resveratrol, and thus investigates the therapeutic potential in AD.


Sign in / Sign up

Export Citation Format

Share Document