scholarly journals Comparison Between Human and Rodent Neurons for Persistent Activity Performance: A Biologically Plausible Computational Investigation

2021 ◽  
Vol 15 ◽  
Author(s):  
Qian Zhang ◽  
Yi Zeng ◽  
Tielin Zhang ◽  
Taoyi Yang

Elucidating the multi-scale detailed differences between the human brain and other brains will help shed light on what makes us unique as a species. Computational models help link biochemical and anatomical properties to cognitive functions and predict key properties of the cortex. Here, we present a detailed human neocortex network, with all human neuron parameters derived from the newest Allen Brain human brain cell database. Compared with that of rodents, the human neural network maintains more complete and accurate information under the same graphic input. Unique membrane properties in human neocortical neurons enhance the human brain’s capacity for signal processing.

2018 ◽  
Author(s):  
Jonathan T. Ting ◽  
Brian Kalmbach ◽  
Peter Chong ◽  
Rebecca de Frates ◽  
C. Dirk Keene ◽  
...  

AbstractThe powerful suite of available genetic tools is driving tremendous progress in understanding mouse brain cell types and circuits. However, the degree of conservation in human remains largely unknown in large part due to the lack of such tools and healthy tissue preparations. To close this gap, we describe a robust and stable adult human neurosurgically-derived ex vivo acute and cultured neocortical brain slice system optimized for rapid molecular-genetic manipulation. Surprisingly, acute human brain slices exhibited exceptional viability, and neuronal intrinsic membrane properties could be assayed for at least three days. Maintaining adult human slices in culture under sterile conditions further enabled the application of viral tools to drive rapid expression of exogenous transgenes. Widespread neuron-specific labeling was achieved as early as two days post infection with HSV-1 vectors, with virally-transduced neurons exhibiting membrane properties largely comparable to uninfected neurons over this short timeframe. Finally, we demonstrate the suitability of this culture paradigm for optical manipulation and monitoring of neuronal activity using genetically encoded probes, opening a path for applying modern molecular-genetic tools to study human brain circuit function.


Author(s):  
Changhyun Pang ◽  
Chanseok Lee ◽  
Hoon Eui Jeong ◽  
Kahp-Yang Suh

Close observation of various attachment systems in animal skins has revealed various exquisite multi-scale architectures for essential functions such as locomotion, crawling, mating, and protection from predators. Some of these adhesion systems of geckos and beetles have unique structural features (e.g. high-aspect ratio, tilted angle, and hierarchical nanostructure), resulting in mechanical interlocking mediated by van der Waals forces or liquid secretion (capillary force). In this chapter, we present an overview of recent advances in bio-inspired, artificial dry adhesives, and biomimetics in the context of nanofabrication and material properties. In addition, relevant bio-inspired structural materials, devices (clean transportation device, interlocker, biomedical skin patch, and flexible strain-gauge sensor) and microrobots are briefly introduced, which would shed light on future smart, directional, and reversible adhesion systems.


2013 ◽  
Vol 27 (9) ◽  
pp. 1143-1149 ◽  
Author(s):  
Dai Li-Bo ◽  
Yan Miao ◽  
Li Huan-De ◽  
Fang Ping-Fei ◽  
Wang Feng ◽  
...  

2018 ◽  
Vol 5 (2) ◽  
pp. 215
Author(s):  
Md Arafat Hassan ◽  
Rakibul Islam ◽  
Rehnuma Mahjabin

This paper has been developed to capture the land coverage change in Gazipur Sadar Upazila with the help of remote sensing data of 44 years from 1973 to 2017. After acquiring the study area image of 1973, 1991, 2006 and 2017 supervised classification method has been used to get the accurate information from the satellite image and the whole outcome has been transformed into measurable unit (sq km) and graphs. The accuracy of land coverage was ranged from 85% to 89%. The outcome says that the acceleration of economic growth and pressure of huge population took a heavy toll on the vegetation coverage which decreased -199.7%. People are destroying vegetation coverage for building up settlements and infrastructure. In the year 2017, the map shows that the built-up area increased 312.9% for industry, settlement and agricultural purpose. Moreover agricultural land also drops down from 42% to 32%.  The rapid rate of decreasing vegetation coverage and small amount of existing vegetation coverage only 57 sq km (in 2017) is a red alert for the region. The Sal forest and other special flora species of that region is valuable resource for environment. This paper shed light on the fact that it is urgent to protect vegetation coverage so it will help the authority to make good policies and use other techniques to save vegetation coverage.


2021 ◽  
pp. 1-55
Author(s):  
Amit Naskar ◽  
Anirudh Vattikonda ◽  
Gustavo Deco ◽  
Dipanjan Roy ◽  
Arpan Banerjee

Abstract Previous computational models have related spontaneous resting-state brain activity with local excitatory−inhibitory balance in neuronal populations. However, how underlying neurotransmitter kinetics associated with E-I balance governs resting state spontaneous brain dynamics remains unknown. Understanding the mechanisms by virtue of which fluctuations in neurotransmitter concentrations, a hallmark of a variety of clinical conditions relate to functional brain activity is of critical importance. We propose a multi-scale dynamic mean field model (MDMF) – a system of coupled differential equations for capturing the synaptic gating dynamics in excitatory and inhibitory neural populations as a function of neurotransmitter kinetics. Individual brain regions are modelled as population of MDMF and are connected by realistic connection topologies estimated from Diffusion Tensor Imaging data. First, MDMF successfully predicts resting-state functionalconnectivity. Second, our results show that optimal range of glutamate and GABA neurotransmitter concentrations subserve as the dynamic working point of the brain, that is, the state of heightened metastability observed in empirical blood-oxygen-level dependent signals. Third, for predictive validity the network measures of segregation (modularity and clustering coefficient) and integration (global efficiency and characteristic path length) from existing healthy and pathological brain network studies could be captured by simulated functional connectivity from MDMF model.


Cephalalgia ◽  
2018 ◽  
Vol 38 (13) ◽  
pp. 1976-1983 ◽  
Author(s):  
William Renthal

Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.


Sign in / Sign up

Export Citation Format

Share Document