scholarly journals The Molecular Landscape and Biological Alterations Induced by PRAS40-Knockout in Head and Neck Squamous Cell Carcinoma

2021 ◽  
Vol 10 ◽  
Author(s):  
Gang Chen ◽  
Zhexuan Li ◽  
Changhan Chen ◽  
Jiajia Liu ◽  
Weiming Zhu ◽  
...  

PRAS40 (Prolin-rich Akt substrate of 40 kDa) is a critical protein, which directly connects PI3K/Akt and mTORC1 pathway. It plays an indispensable role in the development of various diseases. However, the relationship between PRAS40 and head and neck squamous cell carcinoma (HNSCC) remains unclear. Here, our study indicated that high expression of PRAS40 mRNA is a favorable prognostic factor in HNSCC patients by analyzing 498 clinical and mRNA data. Moreover, we confirmed that CRISPR/Cas9 induced PRAS40-knockout would promote colony formation, cell migration, and invasion in several HNSCC cell lines. RNA-seq was employed to investigate the further possible mechanisms involving the above regulations by PRAS40 in HNSCC cells. The molecular landscape contributed by 253 differentially expressed mRNA after PRAS40-knockout was enriched in TGF-beta, PI3K-Akt, P53, mTOR, NF-κB signaling pathway. Partial molecular alternations within these pathways were validated by qPCR or Western blotting. Besides, we found that high expression of PRAS40 in HNSC patients would present more CD8+ T and T follicular helper cells, but less Th17 cells than the patients with low expression of PRAS40. The altered molecular pathways and tumor-infiltrating immune cells might associate with the mechanism of PRAS40 being a suppressor in HNSCC cells, which would provide a potential prognostic predictor and therapeutic target in HNSCC patients.

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1281 ◽  
Author(s):  
Kacper Guglas ◽  
Tomasz Kolenda ◽  
Maciej Stasiak ◽  
Magda Kopczyńska ◽  
Anna Teresiak ◽  
...  

YRNAs are a class of non-coding RNAs that are components of the Ro60 ribonucleoprotein particle and are essential for initiation of DNA replication. Ro60 ribonucleoprotein particle is a target of autoimmune antibodies in patients suffering from systemic lupus erythematosus and Sjögren’s syndrome. Deregulation of YRNAs has been confirmed in many cancer types, but not in head and neck squamous cell carcinoma (HNSCC). The main aim of this study was to determine the biological role of YRNAs in HNSCC, the expression of YRNAs, and their usefulness as potential HNSCC biomarkers. Using quantitative reverse transcriptase (qRT)-PCR, the expression of YRNAs was measured in HNSCC cell lines, 20 matched cancer tissues, and 70 FFPETs (Formaline-Fixed Paraffin-Embedded Tissue) from HNSCC patients. Using TCGA (The Cancer Genome Atlas) data, an analysis of the expression levels of selected genes, and clinical-pathological parameters was performed. The expression of low and high YRNA1 expressed groups were analysed using gene set enrichment analysis (GSEA). YRNA1 and YRNA5 are significantly downregulated in HNSCC cell lines. YRNA1 was found to be significantly downregulated in patients’ tumour sample. YRNAs were significantly upregulated in T4 stage. YRNA1 showed the highest sensitivity, allowing to distinguish healthy from cancer tissue. An analysis of TCGA data revealed that expression of YRNA1 was significantly altered in the human papilloma virus (HPV) infection status. Patients with medium or high expression of YRNA1 showed better survival outcomes. It was noted that genes correlated with YRNA1 were associated with various processes occurring during cancerogenesis. The GSEA analysis showed high expression enrichment in eight vital processes for cancer development. YRNA1 influence patients’ survival and could be used as an HNSCC biomarker. YRNA1 seems to be a good potential biomarker for HNSCC, however, more studies must be performed and these observations should be verified using an in vitro model.


2014 ◽  
Vol 31 (6) ◽  
pp. 639-649 ◽  
Author(s):  
Marcos Vinícius Macedo de Oliveira ◽  
Carlos Alberto de Carvalho Fraga ◽  
Lucas Oliveira Barros ◽  
Camila Santos Pereira ◽  
Sérgio Henrique Sousa Santos ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiang Wu ◽  
Jin Li ◽  
Tingyuan Yan ◽  
Xueping Ke ◽  
Xin Li ◽  
...  

Abstract Background The homeobox gene Homeobox B7 (HOXB7) is overexpressed across a range of cancers and promotes tumorigenesis through varying effects on proliferation, survival, migration and invasion. However, its expression pattern and oncogenic role of HOXB7 in head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. Here, we aimed to explore the expression pattern of HOXB7, its clinical significance as well as functional roles in HNSCC. Methods HOXB7 mRNA expression in HNSCC was determined by data mining and analyses from TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) datasets. The protein abundance of HOXB7 was measured by immunohistochemistry in 119 primary HNSCC samples and associations between its expression and clinicopathological parameters and patient survival were evaluated. The pro-tumorigenic roles of HOXB7 in HNSCC were further delineated in vitro by loss-of-function assay. And a xenograft tumor model was established in nude mice to assess the role of HOXB7 in tumor growth. Connectivity Map (CMap) analysis was performed to identify bioactive small molecules which might be potential inhibitors for HOXB7. Results Bioinformatics analyses showed that HOXB7 mRNA was significantly overexpressed in 8 independent HNSCC datasets from TCGA and GEO databases. HOXB7 protein was markedly upregulated in HNSCC samples as compared to normal counterparts and its overexpression significantly associated with high pathological grade, advanced clinical stage, cervical node metastasis (P = 0.0195, 0.0152, 0.0300) and reduced overall and disease-free survival (P = 0.0014, 0.0007). Univariate and multivariate Cox regression analyses further revealed HOXB7 as an independent prognostic factor for patients’ overall survival. Moreover, HOXB7 knockdown significantly inhibited cell proliferation, migration and invasion and induced cell apoptosis in HNSCC cells, and resulted in compromised tumour growth in vivo. Furthermore, CMap (Connectivity map) analysis has identified three potential bioactive small molecule inhibitors (NU-1025, thiamine, vinburnine) for HOXB7 targeted therapy in HNSCC. Conclusions Our findings revealed that overexpression of HOXB7 was associates with tumour aggressiveness and unfavourable prognosis by serving a novel prognostic biomarker in HNSCC. Moreover, HOXB7 might be involved in the development and progression of HNSCC as an oncogene, and thereby might be a potential therapeutic target for HNSCC.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 395 ◽  
Author(s):  
Chris Yang ◽  
Wafik Sedhom ◽  
John Song ◽  
Shi-Long Lu

Head and neck squamous cell carcinoma (HNSCC) affects 650,000 people worldwide and has a dismal 50% 5-year survival rate. Recurrence and metastasis are believed the two most important factors causing this high mortality. Understanding the biological process and the underlying mechanisms of recurrence and metastasis is critical to develop novel and effective treatment, which is expected to improve patients’ survival of HNSCC. MicroRNAs are small, non-coding nucleotides that regulate gene expression at the transcriptional and post-transcriptional level. Oncogenic and tumor-suppressive microRNAs have shown to regulate nearly every step of recurrence and metastasis, ranging from migration and invasion, epithelial-mesenchymal transition (EMT), anoikis, to gain of cancer stem cell property. This review encompasses an overview of microRNAs involved in these processes. The recent advances of utilizing microRNA as biomarkers and targets for treatment, particularly on controlling recurrence and metastasis are also reviewed.


2020 ◽  
Vol 11 (6) ◽  
pp. 1596-1605
Author(s):  
Qiaoshi Xu ◽  
Hanyue Chang ◽  
Xuerui Tian ◽  
Chao Lou ◽  
Hailong Ma ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Tingting Zhang ◽  
Xueqin Zhu ◽  
Qiang Sun ◽  
Xing Qin ◽  
Zhen Zhang ◽  
...  

Constituents of tobacco that can cause DNA adduct formation and oxidative stress are implicated in the development of head and neck squamous cell carcinoma (HNSCC). However, there are few studies on the mechanism(s) that underlie tobacco-associated HNSCC. Here, we used a model in which tumors were induced in rats using 4-nitroquinoline 1-oxide (4NQO), which mimicked tobacco-related HNSCC, and analyzed the expression profiles of microRNAs and mRNAs. Our results indicated that 57 miRNAs and 474 mRNA/EST transcripts exhibited differential expression profiles between tumor and normal tongue tissues. In tumor tissue, the expression levels of rno-miR-30 family members (rno-miR-30a, rno-miR-30a-3p, rno-miR-30b-5p, rno-miR-30c, rno-miR-30d, rno-miR-30e and rno-miR-30e-3p) were only 8% to 37% of those in the control group. The GO terms enrichment analysis of the differentially expressed miRNAs indicated that oxidation reduction was the most enriched process. Low expression of miR-30 family members in human HNSCC cell lines and tissues was validated by qPCR. The results revealed that the expression of miR-30b-5p and miR-30e-5p was significantly decreased in the TCGA HNSCC dataset and validation datasets, and this decrease in expression further distinguishes HNSCC associated with tobacco use from other subtypes of HNSCC. CCK8, colony formation, transwell migration and HNSCC xenograft tumor assays indicated that miR-30b-5p or miR-30e-5p inhibited proliferation, migration and invasion in vitro, and miR-30b-5p suppressed tumor growth in vivo. Moreover, we uncovered that KRAS might be the potential target gene of miR-30e-5p or miR-30b-5p. Thus, our data clearly showed that decreased expression of miR-30e-5p or miR-30b-5p may play a crucial role in cancer development, especially that of tobacco-induced HNSCC, and may be a novel candidate biomarker and target for this HNSCC subtype.


Sign in / Sign up

Export Citation Format

Share Document