scholarly journals KIF21B Expression in Osteosarcoma and Its Regulatory Effect on Osteosarcoma Cell Proliferation and Apoptosis Through the PI3K/AKT Pathway

2021 ◽  
Vol 10 ◽  
Author(s):  
Songjia Ni ◽  
Jianjun Li ◽  
Sujun Qiu ◽  
Yingming Xie ◽  
Kaiqin Gong ◽  
...  

Osteosarcoma (OS) is the most common malignancy that occurs mainly during childhood and adolescence; however, no clear molecular or biological mechanism has been identified. In this study, we aimed to explore new biomarkers for the early diagnosis, targeted treatment, and prognostic determination of osteosarcoma. We first used bioinformatics analysis to show that KIF21B can be used as a biomarker for the diagnosis and prognosis of osteosarcoma. We then examined the expression of KIF21B in human osteosarcoma tissues and cell lines using immunohistochemistry, western blotting, and qRT-PCR. It was found that KIF21B expression was significantly upregulated in osteosarcoma tissues and cell lines. After knocking down the expression of KIF21B in the osteosarcoma cell lines 143B and U2-OS, we used cell fluorescence counting, CCK-8 assays, flow cytometry, and TUNEL staining to examine the effects of KIF21B on osteosarcoma cell proliferation and apoptosis. The results demonstrated that knocking down KIF21B in 143B and U2-OS cells could increase cell apoptosis, inhibit cell proliferation, and reduce tumor formation in nude mice. Subsequently, we used gene chips and bioinformatics to analyze the differential gene expression caused by knocking down KIF21B. The results showed that KIF21B may regulate OS cell proliferation and apoptosis by targeting the PI3K/AKT pathway. We then examined the expression of PI3K/AKT- and apoptosis-related proteins using western blotting. KIF21B knockdown inhibited the PI3K pathway, downregulated Bcl-2, and upregulated Bax. Moreover, the use of PI3K/AKT pathway agonists reversed the regulatory effect of KIF21B on the apoptosis and proliferation of 143B and U2-OS cells. In conclusion, our results indicated that KIF21B plays a key role in osteosarcoma. Low KIF21B expression might indirectly increase the apoptosis and inhibit the proliferation of osteosarcoma cells through the PI3K/AKT pathway.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Biyong Deng ◽  
Runsang Pan ◽  
Xin Ou ◽  
Taizhe Wang ◽  
Weiguo Wang ◽  
...  

Purpose. Osteosarcoma (Os) is the most frequent malignant tumor of the bone in the pediatric age group, and accumulating evidences show that lncRNAs play a key role in the development of Os. Thus, we investigated the role of RBM5-AS1 and its molecular mechanism. Methods. The expression of RBM5-AS1 in Os tissues and cell lines was detected by real-time polymerase chain reaction (QPCR). The effect of RBM5-AS1 on the proliferation of Os cells was detected using CCK8 assays and flow cytometry. The effect of RBM5-AS1 on the migration and invasion of Os cells was detected by transwell assays. And we performed QPCR and western blotting assays to investigate the relationship between RBM5-AS1 and RBM5. Finally, western blotting assays were performed to explore the mechanism of RBM5. Results. LncRNA RBM5-AS1 was overexpressed in the Os tissues and cell lines. And lncRNA RBM5-AS1 promoted Os cell proliferation, migration, and invasion in vitro and tumor growth in vivo. LncRNA RBM5-AS1 targets RBM5 in Os cells. Conclusion. To sum up, the results showed that lncRNA RBM5-AS1 promotes cell proliferation, migration, and invasion in Os.


2021 ◽  
pp. 1-7
Author(s):  
Jian Zhou ◽  
Zhen-yu Tang ◽  
Xiao-liang Sun

The PI3K/AKT pathway plays an important role in the development of osteosarcoma. RNF38 interferes with activation of the AKT pathway. Cryptochrome1 (CRY1) inhibits osteosarcoma proliferation through the AKT pathway. We aimed to clarify whether RNF38 affects the proliferation of osteosarcoma cells by regulating the PI3K/AKT pathway through its interaction with CRY1. The mRNA levels of RNF38 were determined using qRT-PCR. Protein levels of RNF38, p-p70S6, p70S6, +p-AKT, AKT, p-mTOR, mTOR, and CRY1 were detected by western blotting. The proliferation of osteosarcoma cells was detected using CCK-8 and colony formation assays. The interaction between CRY1 and RNF38 was detected by co-immunoprecipitation and GST pull-down assays. RNF38 expression was higher in Saos-2 and U20S cells than in hFOB cells. Overexpression of RNF38 promoted the proliferation of osteosarcoma cells, the number of colonies, and p-AKT and p-mTOR levels, suggesting that overexpression of RNF38 activated the PI3K/AKT pathway. In addition, RNF38 directly binds to the N-terminal of CRY1. The simultaneous knockdown of RNF38 and CRY1 restored the level of p-AKT, which was reduced by RNF38 knockdown alone. RNF38 affects the proliferation of osteosarcoma cells by regulating the PI3K/AKT pathway through its interaction with CRY1.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jian Zhou ◽  
Mingyong Wang ◽  
Zhen Zhou ◽  
Wanchun Wang ◽  
Juan Duan ◽  
...  

We performed a detailed cancer VS normal analysis to explore the expression and prognostic value of minichromosome maintenance (MCM) proteinsin human sarcoma. The mRNA expression levels of the MCM family genes in sarcoma were analyzed using data from ONCOMINE, GEPIA and CCLE databases. KEGG database was used to analyze the function of MCM2–7 complex in DNA replication and cell cycle. QRT-PCR and western blot were used to confirm the differential expression of key MCMs in osteosarcoma cell lines. Cell Counting Kit-8 and flow cytometry method were used to detect the cell proliferation and apoptosis of hFOB1.19 cells. The results showed that MCM1–7 and MCM10 were all upregulated in sarcoma in ONCOMINE database. MCM2, and MCM4–7 were highly expressed in sarcoma in GEPIA database. Moreover, all these ten factors were highly expressed in sarcoma cell lines. Furthermore, we analyzed the prognostic value of MCMs for sarcoma in GEPIA and found that MCM2, MCM3, MCM4, and MCM10 are prognostic biomarkers for human sarcoma. Analysis results using KEGG datasets showed that MCM4 and MCM6–7 constituted a core structure of MCM2-7 hexamers. We found that AzadC treatment and overexpression of MCM4 significantly promoted hFOB1.19 cell proliferation and inhibited apoptosis. The present study implied that MCM2–4 and 10 are potential biomarkers for the prognosis of sarcoma. The prognostic role of MCM4 may be attributable to the change in its DNA methylation patterns.


2017 ◽  
Vol 41 (4) ◽  
pp. 1519-1531 ◽  
Author(s):  
Beibei Bie ◽  
Jin Sun ◽  
Jun Li ◽  
Ying Guo ◽  
Wei Jiang ◽  
...  

Background/Aims: Baicalein has been shown to possess significant anti-hepatoma activity by inhibiting cell proliferation. Whether the anti-proliferative effect of baicalein is related to its modulation of miRNA expression in hepatocellular carcinoma (HCC) is still unknown. Methods: The anti-proliferative effects of baicalein on HCC cell line Bel-7402 was assessed by detecting the proliferation activity, cell cycle distribution, expression changes of p21/CDKN1A, P27/CDKN1B, total Akt and phosphoryted AKT. Microarray analysis was conducted to determine the miRNA expression profiles in baicalein-treated or untreated Bel-7402 cells and then validated by qRT-PCR in two HCC cell lines (Bel-7402 and Hep3B). The gain-of-function of miR-3127-5p was performed by detecting anti-proliferative effects after transfecting miRNA mimics in cells. Finally, the expression level of miR-3127-5p in different HCC cell lines was determined by qRT-PCR. Results: Baicalein was able to inhibit the proliferation of Bel-7402 cells by inducing cell cycle arrest at the S and G2/M phase via up-regulating the expression of p21/CDKN1A and P27/CDKN1B and suppressing the PI3K/Akt pathway. Baicalein could alter the miRNA expression profiles in Bel-7402 cells. Putative target genes for differentially expressed miRNAs could be enriched in terms of cell proliferation regulation, cell cycle arrest and were mainly involved in MAPK, PI3K-Akt, Wnt, Hippo and mTOR signaling pathways. MiR- 3127-5p, one of up-regulated miRNAs, exhibits low expression level in several HCC cell lines and its overexpression could inhibit cell growth of Bel-7402 and Hep3B cell lines by inducing S phase arrest by up-regulating the expression of p21and P27 and repressing the PI3K/Akt pathway. Conclusions: Modulation of miRNA expression may be an important mechanism underlying the anti-hepatoma effects of baicalein.


2018 ◽  
Vol 38 (20) ◽  
Author(s):  
Dong-Mei Wu ◽  
Xin Wen ◽  
Xin-Rui Han ◽  
Shan Wang ◽  
Yong-Jian Wang ◽  
...  

ABSTRACT In the current study, we were interested in exploring the molecular mechanism of circular RNA DLEU2 (circRNA-DLEU2) (hsa_circ_0000488) and microRNA 496 (miR-496), as well as PRKACB, in human acute myeloid leukemia (AML) cell activities. The RNA expression levels of circRNA-DLEU2, hsa-miR-496, and PRKACB were assessed by quantitative real-time PCR (qRT-PCR). The proliferation and apoptosis abilities of the cells were determined by CCK8 assay and flow cytometry analysis. Target relationships between circRNA-DLEU2 and miR-496, as well as PRKACB, were analyzed by luciferase reporter assay and probe assay. Immunoblotting assays were used to detect the protein expression level of PRKACB. We also did in vivo experiments to observe tumor formation after overexpression of circRNA-DLEU2. Our data showed that circRNA-DLEU2 was upregulated in AML tissues and cells, which promoted AML cell proliferation and inhibited cell apoptosis. circRNA-DLEU2 promoted AML tumor formation in vivo. miR-496 was inhibited by circRNA-DLEU2 and was downregulated in AML tissues. circRNA-DLEU2 inhibited miR-496 expression and promoted PRKACB expression. miR-496 antagonized the effects of PRKACB on MOLM-13 cell proliferation and apoptosis. Collectively, circRNA-DLEU2 accelerated human AML by suppressing miR-496 and promoting PRKACB expression.


2018 ◽  
Vol 13 (2) ◽  
pp. 1934578X1801300
Author(s):  
Xiu-cai Ma ◽  
Hui-qiang Ding ◽  
Jian-dang Shi ◽  
Long Hei ◽  
Ning-kui Niu ◽  
...  

Cinobufacini (huachansu) is a traditional Chinese medicine extracted from the skin of Bufo bufo gargarizans, which is used in clinical cancer therapy. The purpose of this study was to investigate the signaling pathways regulating cinobufacini-induced apoptosis in the osteosarcoma cell line, U2OS. We used 3-[4,5-dimethylthiazol- 2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate the effects of cinobufacini on cell proliferation in U2OS cells. Changes in cell morphology and apoptosis were detected by TUNEL staining. The expression of apoptosis-related and Wnt/β-catenin pathway proteins was detected by immunofluorescence, RT-PCR, and western blot analysis. Our data indicated that cinobufacini significantly inhibited cell proliferation in a dose- and time-dependent manner. Marked changes in cell morphology and apoptosis rate were clearly observed after cinobufacini treatment. The Wnt/β-catenin pathway was activated, and β-catenin expression was positive in cells after treatment. Further, protein expression of bax was increased, whereas bcl-2 was decreased, resulting in an increased bax/bcl-2 ratio. Moreover, after cinobufacini treatment, the expression of Wnt/β-catenin pathway-related proteins was similar to controls. Taken together, our study indicates that cinobufacini can induce apoptosis in U2OS cells, likely through activating the Wnt/β-catenin pathway.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4857-4857
Author(s):  
Chen Fangyuan ◽  
Zhang Minyue ◽  
Cai Jiayi ◽  
Shen Lijing

Abstract Introduction Many studies have been confirmed that neovascularization, the formation of new blood vessels from existing vasculature, plays an essential role in growth, development and metastasis of acute leukemia. At present, antiangiogenic therapy of leukemia become the new hot spot. Acanthopanax senticosus(Chianese name Ci Wu Jia ,CWJ) is a kind of Chinese herb, which contain natural flavonoid compounds and have been proven to inhibit leukemia cell proliferation. But there is no detailed report about the relationship with the inhibition of leukemia cells and the inhibition of angiogenesis effect. In this study, we should demonstrate the inhibition of leukemia cell growth and antiangiogenic mechanism through HL60 cell lines, further confirm the inhibitory effect on leukemia and antiangiogenic effect of Acanthopanax senticosus, Methods HL60 cells were treated with different concentrations of Acanthopanax senticosus (25°¢50°¢75°¢100°¢200µg/ml). Cell proliferation were detected using Cell Counting Kit-8. Kinds of transcription factors in Dll4/Notch (Delta-like 4 is the only ligand of Notch expressing in endothelium) and VEGF(R) signaling pathway were evaluated using quantitative real-time PCR (qRT-PCR) and Western blotting. Results Acanthopanax senticosus inhibited the growth of HL60 cells, and the time and concentration dependence(Fig.1). We extracted RNA and protein from these cells at 12hr, 24hr and 48hr respectively, found that Acanthopanax senticosus remarkably results in VEGF, VEGFR2(VEGF Receptor 2), DLL4 down-regulation based on the time and the concentration dependence, and mild inhibit VEGFR1(VEGF Receptor 1) and Notch1 factors gene expression(Fig. 2). Western blotting also showed a significant inhibition protein of VEGFR2, DLL4 and Notch1, mild inhibited the expression of VEGF and VEGFR1 protein, and with time and concentration dependence (Fig. 3). Summary Acanthopanax senticosus can inhibited proliferation of HL60 cells in vitro and anti-angiogenesis effect mainly via inhibition of VEGFR2-mediated signaling. It has an instantaneous effect on Dll4/ Notch signaling pathway. The data have elucidated the potential roles of several key signaling pathways in angiogenesis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document