scholarly journals LncRNA RBM5-AS1 Promotes Osteosarcoma Cell Proliferation, Migration, and Invasion

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Biyong Deng ◽  
Runsang Pan ◽  
Xin Ou ◽  
Taizhe Wang ◽  
Weiguo Wang ◽  
...  

Purpose. Osteosarcoma (Os) is the most frequent malignant tumor of the bone in the pediatric age group, and accumulating evidences show that lncRNAs play a key role in the development of Os. Thus, we investigated the role of RBM5-AS1 and its molecular mechanism. Methods. The expression of RBM5-AS1 in Os tissues and cell lines was detected by real-time polymerase chain reaction (QPCR). The effect of RBM5-AS1 on the proliferation of Os cells was detected using CCK8 assays and flow cytometry. The effect of RBM5-AS1 on the migration and invasion of Os cells was detected by transwell assays. And we performed QPCR and western blotting assays to investigate the relationship between RBM5-AS1 and RBM5. Finally, western blotting assays were performed to explore the mechanism of RBM5. Results. LncRNA RBM5-AS1 was overexpressed in the Os tissues and cell lines. And lncRNA RBM5-AS1 promoted Os cell proliferation, migration, and invasion in vitro and tumor growth in vivo. LncRNA RBM5-AS1 targets RBM5 in Os cells. Conclusion. To sum up, the results showed that lncRNA RBM5-AS1 promotes cell proliferation, migration, and invasion in Os.

2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


2017 ◽  
Vol 44 (2) ◽  
pp. 567-580 ◽  
Author(s):  
Wei Zhang ◽  
Weitang Yuan ◽  
Junmin Song ◽  
Shijun Wang ◽  
Xiaoming Gu

Background/Aims: Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) regulate diverse cellular processes and cancer progression. Whether lncRNAs play any functional role in colorectal carcinoma (CRC) remains largely unknown. The aim of this study was to investigate the role of lncRNA CPS1 intronic transcript 1 (CPS1-IT1) in CRC. Methods: Expression of CPS1-IT1 was initially assessed in human CRC tissues and in a series of CRC cell lines. The correlations between CPS1-IT1 levels and survival outcomes were analyzed to elucidate the clinical significance of CPS1-IT1 in CRC. The underlying mechanisms of CPS1-IT1 in CRC were analyzed through in vitro and in vivo functional assays. Results: Expression of CPS1-IT1 was significantly decreased in CRC tissues and cell lines, and patients with low CPS1-IT1 expression had poor survival outcomes. The results of in vitro assays revealed that CPS1-IT1 significantly reduced cell proliferation, migration and invasion capacities and accelerated cell apoptosis, thereby suppressing epithelial-mesenchymal transition (EMT). An in vivo animal model also demonstrated the tumor-suppressive role of CPS1-IT1. Conclusion: In this study, we found that CPS1-IT1 has a tumor-suppressive role in CRC. Our data suggest that CPS1-IT1 could be used as a new prognostic biomarker and therapeutic target for CRC.


2016 ◽  
Vol 15 (6) ◽  
pp. NP105-NP112 ◽  
Author(s):  
Fei Wang ◽  
Dapeng Yu ◽  
Zhen Liu ◽  
Ruijie Wang ◽  
Yan Xu ◽  
...  

MicroRNAs are highly conserved noncoding RNA that negatively modulate protein expression at a posttranscriptional and/or translational level and are deeply involved in the pathogenesis of several types of cancers. To date, the potential microRNAs regulating the growth and progression of osteosarcoma are not fully identified yet. Previous reports have shown differentially expressed miR-125b in osteosarcoma. However, the role of miR-125b in human osteosarcoma has not been totally illuminated. In this study, we have shown that miR-125b was downregulated in human osteosarcoma tissues compared to the adjacent tissues and effects as a tumor suppressor in vitro. We found that stable overexpression of miR-125b in osteosarcoma cell lines U2OS and MG-63 inhibited cell proliferation, migration, and invasion. Our data also verified that Bcl-2 is the target of miR-125b. Meanwhile, we showed that Bcl-2 was inversely correlated with miR-125b in osteosarcoma tissues. More importantly, we proved that miR-125b increased the chemosensitivity of osteosarcoma cell lines to cisplatin by targeting Bcl-2. In conclusion, our data demonstrate that miR-125b is a tumor suppressor and support its potential application for the treatment of osteosarcoma in the future.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zehua Zhang ◽  
Fei Dai ◽  
Fei Luo ◽  
Wenjie Wu ◽  
Shuai Zhang ◽  
...  

AbstractOsteosarcoma is a malignant osteoblastic tumor that can gravely endanger the lives and health of children and adolescents. Therefore, there is an urgent need to explore new biomarkers for osteosarcoma and determine new targeted therapies to improve the efficacy of osteosarcoma treatment. Diaphanous related formin 3 (DIAPH3) promotes tumorigenesis in hepatocellular carcinoma and lung adenocarcinoma, suggesting that DIAPH3 may be a target for tumor therapy. To date, there have been no reports on the function of DIAPH3 in osteosarcoma. DIAPH3 protein expression in osteosarcoma tissues and healthy bone tissues adjacent to cancer cells was examined by immunohistochemical staining. DIAPH3 mRNA expression correlates with overall survival and reduced disease-free survival. DIAPH3 protein is upregulated in osteosarcoma tissues, and its expression is significantly associated with tumor size, tumor stage, node metastasis, and distant metastasis. Functional in vitro experiments revealed that DIAPH3 knockdown suppressed cell proliferation and suppressed cell migration and invasion of osteosarcoma cell lines MG-63 and HOS. Functional experiments demonstrated that DIAPH3 knockdown inhibited subcutaneous tumor growth and lung metastasis in vivo. In conclusion, DIAPH3 expression can predict the clinical outcome of osteosarcoma. In addition, DIAPH3 is involved in the proliferation and metastasis of osteosarcoma, and as such, DIAPH3 may be a potential therapeutic target for osteosarcoma.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1749-1761
Author(s):  
Xin Cao ◽  
Xianfeng Meng ◽  
Peng Fu ◽  
Lin Wu ◽  
Zhen Yang ◽  
...  

Abstract Osteosarcoma (OS) is a highly metastatic primary malignant tumor. CircRNA hsa_circ_0028173 (circATP2A2) has been uncovered to be related to the advancement of OS. However, the biological role of circATP2A2 in OS has not been validated. circATP2A2 and MYH9 were upregulated while miR-335-5p was downregulated in OS. OS patients with high circATP2A2 expression displayed a shorter overall survival and the area under curve of circATP2A2 was 0.77, manifesting that circATP2A2 might be a diagnostic and prognostic biomarker. circATP2A2 silencing repressed OS cell proliferation and glycolysis in vivo and constrained OS cell proliferation, glycolysis, migration, and invasion in vitro. circATP2A2 regulated MYH9 expression through sponging miR-335-5p. MiR-335-5p inhibitor reversed the repressive effect of circATP2A2 knockdown on OS cell malignancy and glycolysis. MYH9 overexpression overturned miR-335-5p upregulation-mediated OS cell malignancy and glycolysis. circATP2A2 accelerated OS cell malignancy and glycolysis through upregulating MYH9 via sponging miR-335-5p, offering a promising target for OS treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Chen ◽  
Cui-Cui Zhao ◽  
Fei-Ran Chen ◽  
Guo-Wei Feng ◽  
Fei Luo ◽  
...  

Background. Pancreatic cancer is a malignant tumor of the digestive tract, which is difficult to diagnose and treat due to bad early diagnosis. We aimed to explore the role of kinesin superfamily 4A (KIF4A) in pancreatic ductal adenocarcinoma (PDAC). Methods. We first used the bioinformatic website to screen the data of pancreatic cancer in TCGA, and KIF4A protein was detected among the 86 specimens of patients in our hospital combined with clinic-pathological characteristics and survival analysis. KIF4A loss-expression cell lines were established by RNA interference (RNAi). In addition, we performed in vitro cell assays to detect the changes in cell proliferation, migration, and invasion. The proteins involved in the proliferation and metastasis of cancer cells were also detected by western blot. The above results could be proved in vivo. Further, the correlation between KIF4A and CDC5L was analyzed by TCGA and IHC data. Results. We first found a high expression of KIF4A in pancreatic cancer, suggesting a role of KIF4A in the development of pancreatic cancer. KIF4A was found to be differentially expressed ( P < 0.05 ) among the 86 specimens of patients in our hospital and was significantly associated with PDAC TNM stages and tumor size. High KIF4A expression also significantly worsened overall survival (OS) and disease-free survival rate (DFS) ( P < 0.05 , respectively). In addition, cell proliferation, migration, and invasion were inhibited by the KIF4A-shRNA group compared with the control ( P < 0.05 , respectively). In the end, knockdown of KIF4A could inhibit tumor development and metastasis in vivo. Further, the positive correlation between KIF4A and CDC5L existed, and KIF4A might promote pancreatic cancer proliferation by affecting CDC5L expression. Conclusion. In conclusion, the high expression level of KIF4A in PDAC was closely related to poor clinical and pathological status, lymphatic metastasis, and vascular invasion. KIF4A might be involved in promoting the development of PDAC in vitro and in vivo, which might be a new therapeutic target of PDAC.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingmin Chen ◽  
Ludong Tan ◽  
Zhe Jin ◽  
Yahui Liu ◽  
Ze Zhang

Cellular retinoic acid-binding protein 2 (CRABP2) binds retinoic acid (RA) in the cytoplasm and transports it into the nucleus, allowing for the regulation of specific downstream signal pathway. Abnormal expression of CRABP2 has been detected in the development of several tumors. However, the role of CRABP2 in hepatocellular carcinoma (HCC) has never been revealed. The current study aimed to investigate the role of CRABP2 in HCC and illuminate the potential molecular mechanisms. The expression of CRABP2 in HCC tissues and cell lines was detected by western blotting and immunohistochemistry assays. Our results demonstrated that the expression levels of CRABP2 in HCC tissues were elevated with the tumor stage development, and it was also elevated in HCC cell lines. To evaluate the function of CRABP2, shRNA-knockdown strategy was used in HCC cells. Cell proliferation, metastasis, and apoptosis were analyzed by CCK-8, EdU staining, transwell, and flow cytometry assays, respectively. Based on our results, knockdown of CRABP2 by shRNA resulted in the inhibition of tumor proliferation, migration, and invasion in vitro, followed by increased tumor apoptosis-related protein expression and decreased ERK/VEGF pathway-related proteins expression. CRABP2 silencing in HCC cells also resulted in the failure to develop tumors in vivo. These results provide important insights into the role of CRABP2 in the development and development of HCC. Based on our findings, CRABP2 may be used as a novel diagnostic biomarker, and regulation of CRABP2 in HCC may provide a potential molecular target for the therapy of HCC.


2016 ◽  
Vol 34 (2_suppl) ◽  
pp. 592-592 ◽  
Author(s):  
Chen Zhao ◽  
Christopher G. Wood ◽  
Jose A. Karam ◽  
Tapati Maity ◽  
Lei Wang

592 Background: Zinc finger protein 395 (ZNF395) is frequently altered in several tumor types. However, the role of ZNF395 remains poorly studied in patients with clear cell renal cell carcinoma (RCC). In this study, we investigated the in vitro and in vivo role of ZNF395 in ccRCC. Methods: cBioPortal For Cancer Genomics was used to correlate the expression of ZNF395 with RCC patient clinical, pathological and molecular profiles. ZNF395 protein and mRNA levels were studied in several RCC cell lines in vitro. Subsequently, ZNF395 knockdown was performed in 786-O and UMRC3 RCC cells and overexpression was done in Caki-1 and 769-P RCC cells. We then evaluated ZNF395 modulation in these cell lines by in vitro MTT, migration and invasion assays. Finally, we studied the effect of ZNF395 knockout and overexpression in vivo using SCID xenograft models. Results: Patients with higher expression of ZNF395 experienced longer disease-free survival and overall survival. Using in vitro models, we confirmed that knockdown of ZNF395 decreased ZNF395 expression, and increased proliferation, migration and invasiveness of 786-O and UMRC3, while overexpression of ZNF395 increased ZNF395 expression, and reduced proliferation, migration and invasiveness of Caki-1 and 769-P. Using in vivo mouse models, knockdown of ZNF395 expression in 786-O promoted tumor growth while its overexpression in Caki-1 resulted in tumor growth inhibition. We are currently performing experiments to understand the process by which ZNF395 regulates ccRCC pathogenesis. Conclusions: Our data support the role of ZNF395 as an important tumor suppressor gene in the pathogenesis of RCC.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 833-833
Author(s):  
Sophia Adamia ◽  
Mariateresa Fulciniti ◽  
Herve Avet-Loiseau ◽  
Samir B Amin ◽  
Parantu Shah ◽  
...  

Abstract Abstract 833 A growing body of evidence suggests that the genome of a many organisms, particularly mammals is controlled not only by transcription factors but also by post-transcriptional programs that are modulated by the family of small RNA molecules including microRNAs (miRs). miRs can block mRNA translation and affect mRNA stability. We have evaluated profiles of 384 human miRs in CD138+ cells from 79 patients with multiple myeloma (MM), 11 MM cell lines and 9 healthy donors (HD) using qRT-PCR based microRNA array. This analysis has identified a MM specific miRNA signature that significantly correlates with OS (p=0.05) and EFS (p=0.017) of patients. Based on this signature one group of patients clustered with HD suggesting indolent disease while other with cell lines indicating aggressive disease. We identified significant modulation of expression of 61 microRNAs in MM cells compared to normal plasma cells. Specific miRs with established oncogenic and tumor suppressor functions such as miR-155, miR-585 and Let7-f were significantly dysregulated in MM (p<0.001). Modulation of miRs-155, -585 and Let7 were observed most frequently in the group of patients with poor OS and EFS suggesting their crucial role in MM. However biological role of these miRs have not yet been defined. To further evaluate biological function of these most recurrent miRs in MM, we evaluated role of miR-155, let-7f and mir-585 in MM cell lines by gain- and loss- of function experiments. We used locked nucleic acid (LNA) anti-miR probes for loss of function and pre-miR-155 for gain of function studies using them alone or in combination. Although manipulation of all 3 miRs induced 20-25% change in MM cell proliferation and/or induction of apoptosis, combination of anti-miR-let7f with pre-miR-155, and anti-miR-585 in combination with miR-155 had dramatic effects on MM cell proliferation and over 60% cells undergoing apoptosis. To evaluate the targets of these miRs, we have determined effects of these anti-miRs and pre-miR on global gene and miR expression profile in MM alone and in combinations. This analysis identified modulation of cluster of miRs as well as genes critical for cell growth and survival. Next, we have tested efficacy of these miRs in vivo in murine Xenograft model to evaluate their therapeutic potential. Tumor-bearing mice were treated intraperitoneal for four consecutively days with the LNA anti-miR-585 and Let-7 and pre-miR-155 probes and respective controls alone and in combination. We observed that the single LNA anti-miR-585 and let 7 and pre miR-155 treatment reduced tumor size by 36%, 31% and 155% in animal 7 days after treatment. However, significant tumor size reductions were achieved when animals were treated with combinations; anti-miR-Let 7f plus pre-miR-155 (58 %); LNA anti-miR-Let 7f plus LNA anti-miR-585 (56 %); LNA-anti-miR-585 plus pre-miR-155 (74 %).We did not observe any significant systemic toxicity in the animals. In conclusion our results suggest significant biological role for miR-585, let 7f and miR-155 in myeloma, both in vitro and in vivo; it highlights for the first time a concerted activity of combination of miRs and holds a great promise for developing novel therapeutic approach for myeloma. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document