scholarly journals Abnormal Glycosylation of Cancer Stem Cells and Targeting Strategies

2021 ◽  
Vol 11 ◽  
Author(s):  
Thahomina Khan ◽  
Horacio Cabral

Cancer stem cell (CSCs) are deemed as one of the main reasons of tumor relapse due to their resistance to standard therapies. Numerous intracellular signaling pathways along with extracellular features are crucial in regulating CSCs properties, such as heterogeneity, plasticity and differentiation. Aberrant glycosylation of these cellular signaling pathways and markers of CSCs have been directly correlated with maintaining survival, self-renewal and extravasation properties. In this review, we highlight the importance of glycosylation in promoting stemness character of CSCs, and present strategies for targeting abnormal glycosylation to eliminate the resistant CSC population.

2019 ◽  
Vol 14 (5) ◽  
pp. 428-436 ◽  
Author(s):  
Gabriele D. Bigoni-Ordóñez ◽  
Daniel Czarnowski ◽  
Tyler Parsons ◽  
Gerard J. Madlambayan ◽  
Luis G. Villa-Diaz

Cancer is a highly prevalent and potentially terminal disease that affects millions of individuals worldwide. Here, we review the literature exploring the intricacies of stem cells bearing tumorigenic characteristics and collect evidence demonstrating the importance of integrin α6 (ITGA6, also known as CD49f) in cancer stem cell (CSC) activity. ITGA6 is commonly used to identify CSC populations in various tissues and plays an important role sustaining the self-renewal of CSCs by interconnecting them with the tumorigenic microenvironment.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 528-528 ◽  
Author(s):  
J. C. Chang ◽  
X. Li ◽  
H. Wong ◽  
C. Creighton ◽  
S. G. Hilsenbeck ◽  
...  

528 Background: Recent evidence supports the existance of a rare subpopulation of ‘cancer stem cells‘ (CSCs) which is chemoresistant and capable of self-renewal and tumor-initiation, resulting in relapse and metastases. We hypothesized that residual breast tumors after conventional chemotherapy (CTx) are enriched for CSCs bearing CD44+/CD24- markers, and show increased self-renewal as demonstrated by mammosphere (MS) forming assays. Molecular pathways like Notch, Wnt, and the polycomb family that regulate normal mammary self-renewal may be in aberrant in CSCs. Methods: Paired breast cancer biopsies from 35 patients were obtained before and after 12 weeks of neoadjuvant CTx (docetaxel 100 mg/m2 or Adriamycin/Cytoxan 60/600 mg/m2, 4 cycles, q3weeks), digested by collagenase, stained with CD24/CD44/lineage antibodies, and analyzed by flow cytometry. MS assays were performed to measure self-renewal ability. Gene expression, using the Affymetrix U133 GeneChip platform, of cancer cells bearing CD44+/CD24- markers vs. all other sorted cells, and between secondary cancer MS vs. the primary bulk invasive cancers were analyzed. Results: CD44+/CD24- cells increased from a median of 4.8% to 14.8% after CTx (p<0.005). Increased self-renewal was demonstrated by an increase in MS capacity after CTx (p=0.03), with a positive correlation between the number of CD44+/24- cells and MS assays (R=0.8, p<0.05). Common molecular pathways shared by CD44+/CD24- cells and MS show increased expression in normal self-renewal pathways - polycomb family (PCGF5), Notch (MAML2), FOXP1, and BBX. In addition, genes governing alternative splicing were increased, including a non-coding RNA (MALAT1) of unknown function, and RNA splicing factors (SFRS3, SFRS21P, SFRS4). Conclusions: Our results with an increase in cells bearing stem cell markers, and increased MS formation of residual tumors provide the first strong clinical evidence for the existance of therapy-resistant cancer stem cells. Post-transcriptional regulation may play a crucial role in modifying gene function involved in cancer stem cell self-renewal. Clinical trials targeting these newly identified pathways may eradicate residual disease and improved cure rates for many breast cancer patients. [Table: see text]


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3253
Author(s):  
Kamini Kaushal ◽  
Suresh Ramakrishna

Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.


2020 ◽  
Vol 8 (18) ◽  
pp. 3985-4001 ◽  
Author(s):  
Xiaomin Suo ◽  
Juncai Zhang ◽  
Yue Zhang ◽  
Xing-Jie Liang ◽  
Jinchao Zhang ◽  
...  

Cancer stem cells (CSCs) exhibit high resistance to conventional therapy and are responsible for cancer metastasis and tumor relapse.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shijie Ding ◽  
Chunbao Li ◽  
Ninghui Cheng ◽  
Xiaojiang Cui ◽  
Xinglian Xu ◽  
...  

Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs) has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs). We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Benedetta Bussolati ◽  
Alessia Brossa ◽  
Giovanni Camussi

According to the cancer stem cell hypothesis tumors are maintained by a cancer stem cell population which is able to initiate and maintain tumors. Tumor-initiating stem cells display stem or progenitor cell properties such as self-renewal and capacity to re-establish tumors that recapitulate the tumor of origin. In this paper, we discuss data relative to the presence of cancer stem cells in human renal carcinoma and their possible origin from normal resident stem cells. The cancer stem cells identified in human renal carcinomas are not derived from the normal CD133+progenitors of the kidney, but rather from a more undifferentiated population that retains a mesenchymal phenotype. This population is able to self-renewal, clonogenicity, and in vivo tumor initiation. Moreover, they retain pluripotent differentiation capability, as they can generate not only the epithelial component of the tumor, but also tumor endothelial cells. This suggests that renal cancer stem cells may contribute to the intratumor vasculogenesis.


2018 ◽  
Vol 19 (11) ◽  
pp. 3345 ◽  
Author(s):  
Md Alam ◽  
Ryota Takahashi ◽  
Said Afify ◽  
Aung Oo ◽  
Kazuki Kumon ◽  
...  

Cripto-1 is a glycophosphatidylinositol (GPI) anchored signaling protein of epidermal growth factor (EGF)-Cripto-1-FRL1-Cryptic (CFC) family and plays a significant role in the early developmental stages and in the different types of cancer cells, epithelial to mesenchymal transition and tumor angiogenesis. Previously, we have developed cancer stem cells (miPS-LLCcm) from mouse iPSCs by culturing them in the presence of conditioned medium of Lewis Lung Carcinoma (LLC) cells for four weeks. Nodal and Cripto-1 were confirmed to be expressed in miPS-LLCcm cells by quantitative reverse transcription PCR (rt-qPCR) implying that Cr-1 was required in maintaining stemness. To investigate the biological effect of adding exogenous soluble CR-1 to the cancer stem cells, we have prepared a C-terminally truncated soluble form of recombinant human CR-1 protein (rhsfCR-1), in which the GPI anchored moiety was removed by substitution of a stop codon through site-directed mutagenesis. rhsfCR-1 effectively suppressed the proliferation and sphere forming ability of miPS-LLCcm cells in a dose-dependent manner in the range of 0 to 5 µg/mL, due to the suppression of Nodal-Cripto-1/ALK4/Smad2 signaling pathway. Frequency of sphere-forming cells was dropped from 1/40 to 1/69 by rhsfCR-1 at 1 µg/mL. Moreover, rhsfCR-1 in the range of 0 to 1 µg/mL also limited the differentiation of miPS-LLCcm cells into vascular endothelial cells probably due to the suppression of self-renewal, which should reduce the number of cells with stemness property. As demonstrated by a soluble form of exogenous Cripto-1 in this study, the efficient blockade would be an attractive way to study Cripto-1 dependent cancer stem cell properties for therapeutic application.


2009 ◽  
Vol 46 (3) ◽  
pp. 391-406 ◽  
Author(s):  
G. Stoica ◽  
G. Lungu ◽  
H. Martini-STOICA ◽  
S. Waghela ◽  
J. Levine ◽  
...  

There is increasing evidence in some malignancies that the tumor clone is heterogeneous in regard to proliferation and differentiation. The cancer stem cell hypothesis implies that not all the cells in the tumor have the same capacity to proliferate and maintain the growth of the tumor. Only a relatively small fraction of cells in the tumor, termed cancer stem cells (CSCs), possess the ability to proliferate and self-renew extensively. In the past decade, several groups have reported the existence of a CSC population in different human brain tumors from both children and adults. We report here the identification of a CSC population from a Boxer dog with glioblastoma multiforme (GBM) that possesses a great capacity for proliferation, self-renewal, and differentiation. This cloned cell line is aneuploid, forms neurospheres in culture, possesses CSC markers, and reproduces the original dog GBM when inoculated into the nude mouse brain.


Author(s):  
Nese Unver

: Cancer stem cells represent a rare subpopulation of cancer cells carrying self-renewal and differentiation features in the multi-step tumorigenesis, tumor recurrence and metastasis. Pro-inflammatory stress is highly associated with cancer stemness via induction of cytokines, tumor-promoting immune cells and cancer stemness-related signaling pathways. This review summarizes the major pro-inflammatory factors affecting cancer stem cell characteristics and the critical immunotherapeutic strategies to eliminate cancer stem cells.


Sign in / Sign up

Export Citation Format

Share Document