scholarly journals Schiff-Linked PEGylated Doxorubicin Prodrug Forming pH-Responsive Nanoparticles With High Drug Loading and Effective Anticancer Therapy

2021 ◽  
Vol 11 ◽  
Author(s):  
Jian Song ◽  
Bingbing Xu ◽  
Hui Yao ◽  
Xiaofang Lu ◽  
Yang Tan ◽  
...  

Developing efficacious drug delivery systems for targeted cancer chemotherapy remains a major challenge. Here we demonstrated a kind of pH-responsive PEGylated doxorubicin (DOX) prodrug via the effective esterification and Schiff base reactions, which could self-assemble into the biodegradable micelles in aqueous solutions. Owing to low pH values inside the tumor cells, these PEG-Schiff-DOX nanoparticles exhibited high drug loading ability and pH-responsive drug release behavior within the tumor cells or tissues upon changes in physical and chemical environments, but they displayed good stability at physiological conditions for a long period. CCK-8 assay showed that these PEGylated DOX prodrugs had a similar cytotoxicity to the MCF-7 tumor cells as the free DOX drug. Moreover, this kind of nanoparticle could also encapsulate small DOX drugs with high drug loading, sufficient drug release and enhanced therapeutic effects toward MCF-7 cells, which will be benefited for developing more drug carriers with desirable functions for clinical anticancer therapy.


2016 ◽  
Vol 4 (12) ◽  
pp. 1802-1813 ◽  
Author(s):  
Na Peng ◽  
Bo Wu ◽  
Lei Wang ◽  
Weiyang He ◽  
Ziye Ai ◽  
...  

Novel pH-responsive and magnetic-targeting nanocarriers with high drug loading content were developed for pH-triggered targeting drug delivery in tumor cells.



2020 ◽  
Vol 59 (45) ◽  
pp. 20065-20074 ◽  
Author(s):  
Yun Liu ◽  
Guangze Yang ◽  
Song Jin ◽  
Run Zhang ◽  
Peng Chen ◽  
...  


2017 ◽  
Vol 19 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Bailiang Wang ◽  
Huihua Liu ◽  
Lin Sun ◽  
Yingying Jin ◽  
Xiaoxu Ding ◽  
...  


2017 ◽  
Vol 5 (33) ◽  
pp. 6847-6859 ◽  
Author(s):  
Xiaoxiao Shi ◽  
Xiaoqian Ma ◽  
Meili Hou ◽  
Yong-E Gao ◽  
Shuang Bai ◽  
...  

A theranostic nanoplatform based on pH-responsive amphiphilic star-like copolymers for theranostic and NIR imaging applications.



2019 ◽  
Vol 19 (6) ◽  
pp. 3301-3309
Author(s):  
Xiawen Zheng ◽  
Yuejian Chen ◽  
Zhiming Wang ◽  
Lina Song ◽  
Yu Zhang ◽  
...  

Through self-assembly of nanoparticles into high-order and stable structures of cubic clusters, high drug-loading rubik-like magnetic nano-assemblies (MNAs), possessing folic acid targeting and strong magnetism-enhanced cellular uptake capabilities, were built. In this study, the core of the cubic drug assemblies consisted of four monodisperse superparamagnetic iron oxide nanoparticles coated with layers of oleic acid (Fe3O4@OA), simultaneously encapsulating fluorescein, and Paclitaxol (Flu-MNAs and PTX-MNAs) for imaging and therapeutic applications. To enable preferential tumor cellular uptake by the nanocarriers, the outermost layer of Fe3O4 was functionalized with the new dual-oleic acid-polyethylene glycol-folic acid polymer (FA-PEG-Lys-OA2) as a “shell.” The drug carriers exhibited excellent stability and biocompatibility, and showed high drug loading and excellent magnetic response In Vitro. Furthermore, preliminary evaluations of the drug carriers with Hela cells showed effective cellular targeting capability. In addition, the cubic assemblies enhanced anticancer efficiency for Hela cells compared to bare drugs. Especially, the applied external magnetic field further improved the uptake of the vectors, and thereby enhanced the inhibitory effect. In brief, all these results suggested that cubic assemblies could serve as potential strategies for targeted anticancer therapies.



2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xin Leng ◽  
Hongliang Huang ◽  
Wenping Wang ◽  
Na Sai ◽  
Longtai You ◽  
...  

Drug delivery carriers with a high drug loading capacity and biocompatibility, especially for controlled drug release, are urgently needed due to the side effects and frequent dose in the traditional therapeutic method. Guided by nanomaterials, we have successfully synthesized zirconium-based metal−organic frameworks, Zr-TCPP (TCPP: tetrakis (4-carboxyphenyl) porphyrin), namely, PCN-222, which is synthesized by solvothermal method. And it has been designed as a drug delivery system (DDS) with a high drug loading of 38.77 wt%. In our work, PCN-222 has achieved pH-sensitive drug release and showed comprehensive SEM, TEM, PXRD, DSC, FTIR, and N2 adsorption-desorption. The low cytotoxicity and good biocompatibility of PCN-222 were certificated by the in vitro results from an MTT assay, DAPI staining, and Annexin V/PI double-staining even cultivated L02 cells and HepG2 cells for 48h. Furthermore, Oridonin, a commonly used cancer chemotherapy drug, is adsorbed into PCN-222 via the solvent diffusion technique. Based on an analysis of the Oridonin release profile, results suggest that it can last for more than 7 days in vitro. And cumulative release rate of Ori at the 7 d was about 86.29% and 63.23% in PBS (pH 5.5 and pH 7.2, respectively) at 37°C. HepG2 cells were chosen to research the cytotoxicity of PCN-222@Ori and free Oridonin. The results demonstrated that the PCN-222@Ori nanocarrier shows higher cytotoxicity in HepG2 cells compared to Oridonin.



2019 ◽  
Vol 7 (7) ◽  
pp. 1050-1055 ◽  
Author(s):  
Liangcan He ◽  
Kanglei Pang ◽  
Wenwen Liu ◽  
Yue Tian ◽  
Lin Chang ◽  
...  

Core–shell Au@zeolitic-imidazolate-framework nanocarriers with high drug-loading, controlled drug release properties, and high cancer treatment efficiency.



RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103414-103420 ◽  
Author(s):  
Dongjian Shi ◽  
Lei Zhang ◽  
Jiali Shen ◽  
Xiaojie Li ◽  
Mingqing Chen ◽  
...  

Rod-like nanocapsules were facilely fabricated based on a bio-based polymer via DOPA adhesion. The nanocapsules showed high drug-loading efficacies and controlled drug release depending on different pH buffer solutions.



2019 ◽  
Vol 298 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Yanwei Chi ◽  
Zhiying Wang ◽  
Jie Wang ◽  
Wenpei Dong ◽  
Pengyang Xin ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document