scholarly journals Prognostic and Immunological Role of Gasdermin E in Pan-Cancer Analysis

2021 ◽  
Vol 11 ◽  
Author(s):  
Zheng Zhang ◽  
Shuangshuang Zhao ◽  
Haizhen Yang ◽  
Yanwei Chen ◽  
Huahui Feng ◽  
...  

Despite accumulating cell- or animal-based experiments providing the relationship between Gasdermin E (GSDME) and human diseases, especially in malignant cancers, no pan-cancer analysis about the function of GSMDE in cancer management can be available up to date. Our research, for the first time, explored the potential carcinogenic role of GSDME across 33 tumors from the public platform of TCGA (The cancer genome atlas) database. GSDME is highly expressed in most malignant cancers, and obvious relationship exists between GSDME level and survival prognosis of cancer patients. The expression of GSDME was statically associated with the cancer-associated fibroblast infiltration in diverse cancer types, such as BLCA, CHOL, GBM, KIRC, LIHC, MESO, STAD, and UCEC. Furthermore, pyroptosis, sensory perception of sound, and defense response to bacterium were involved in the functional mechanisms of GSDME expression from GO analysis. Last but not the least, in vitro experiments were also performed to identify GSDME-induced pyroptosis. Our first pan-cancer analysis of GSDME not only broadens the understanding of the carcinogenic roles of GSDME but also provides a promising therapeutic strategy for benefiting an increasing number of cancerous patients based on GSDME-induced pyroptosis.

2021 ◽  
pp. 1-17
Author(s):  
Youwei Hua ◽  
Zhihui He ◽  
Xu Zhang

Emerging evidence has revealed a relationship between lamin B1 (LMNB1) and several cancers such as cervical cancer, liver cancer, and prostate cancer. But no systematic pan-cancer analysis is available. Little is known about the clinical significance and biomarker utility of LMNB1. In this study, we first revealed the key role of LMNB1 in esophageal carcinoma (ESCA) through weighted gene co-expression network analysis (WGCNA) and disease-free survival (DFS) analysis. Based on this result and the datasets of the cancer genome atlas (TCGA), we explored the biomarker utility of LMNB1 across thirty-three tumors. We found that LMNB1 was highly expressed in most of the cancers and significant associations existed between LMNB1 expression and prognosis of cases of nearly half of the cancers. We also found that LMNB1 expression was associated with the infiltration level of Macrophages M1 and T cells CD4 memory activated in some cancers. Moreover, LMNB1 was mainly involved in the functional mechanisms of MRNA binding, olfactory transduction, and gene silencing. Our study first provides a pan-cancer study of LMNB1, thereby offering a relatively comprehensive understanding of the biomarker utility of LMNB1 across thirty-three tumors.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Biao Wu ◽  
Yumeng Wu ◽  
Xianlin Guo ◽  
Yanping Yue ◽  
Yuanyuan Li ◽  
...  

Several studies have suggested that coatomer protein complex subunit beta 2 (COPB2) may act as an oncogene in various cancer types. However, no systematic pan-cancer analysis has been performed to date. Therefore, the present study analyzed the potential oncogenic role of COPB2 using TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) datasets. The majority of the cancer types overexpressed the COPB2 protein, and its expression significantly correlated with tumor prognosis. In certain tumors, such as those found in breast and ovarian tissues, phosphorylated S859 exhibited high expression. It was found that mutations of the COPB2 protein in kidney and endometrial cancers exhibited a significant impact on patient prognosis. It is interesting to note that COPB2 expression correlated with the number of cancer-associated fibroblasts in certain tumors, such as cervical and endocervical cancers and colon adenocarcinomas. In addition, COPB2 was involved in the transport of substances and correlated with chemotherapy sensitivity. This is considered the first pan-tumor study, which provided a relatively comprehensive understanding of the mechanism by which COPB2 promotes cancer growth.


2018 ◽  
Vol 111 (7) ◽  
pp. 664-674 ◽  
Author(s):  
Rongqiang Yang ◽  
Steven W Li ◽  
Zirong Chen ◽  
Xin Zhou ◽  
Wei Ni ◽  
...  

Abstract Background The LKB1 tumor suppressor gene is commonly inactivated in non-small cell lung carcinomas (NSCLC), a major form of lung cancer. Targeted therapies for LKB1-inactivated lung cancer are currently unavailable. Identification of critical signaling components downstream of LKB1 inactivation has the potential to uncover rational therapeutic targets. Here we investigated the role of INSL4, a member of the insulin/IGF/relaxin superfamily, in LKB1-inactivated NSCLCs. Methods INSL4 expression was analyzed using global transcriptome profiling, quantitative reverse transcription PCR, western blotting, enzyme-linked immunosorbent assay, and RNA in situ hybridization in human NSCLC cell lines and tumor specimens. INSL4 gene expression and clinical data from The Cancer Genome Atlas lung adenocarcinomas (n = 515) were analyzed using log-rank and Fisher exact tests. INSL4 functions were studied using short hairpin RNA (shRNA) knockdown, overexpression, transcriptome profiling, cell growth, and survival assays in vitro and in vivo. All statistical tests were two-sided. Results INSL4 was identified as a novel downstream target of LKB1 deficiency and its expression was induced through aberrant CRTC-CREB activation. INSL4 was highly induced in LKB1-deficient NSCLC cells (up to 543-fold) and 9 of 41 primary tumors, although undetectable in all normal tissues except the placenta. Lung adenocarcinomas from The Cancer Genome Atlas with high and low INSL4 expression (with the top 10th percentile as cutoff) showed statistically significant differences for advanced tumor stage (P < .001), lymph node metastasis (P = .001), and tumor size (P = .01). The INSL4-high group showed worse survival than the INSL4-low group (P < .001). Sustained INSL4 expression was required for the growth and viability of LKB1-inactivated NSCLC cells in vitro and in a mouse xenograft model (n = 5 mice per group). Expression profiling revealed INSL4 as a critical regulator of cell cycle, growth, and survival. Conclusions LKB1 deficiency induces an autocrine INSL4 signaling that critically supports the growth and survival of lung cancer cells. Therefore, aberrant INSL4 signaling is a promising therapeutic target for LKB1-deficient lung cancers.


2020 ◽  
Vol 21 (17) ◽  
pp. 6087
Author(s):  
Yunzhen Wei ◽  
Limeng Zhou ◽  
Yingzhang Huang ◽  
Dianjing Guo

Long noncoding RNA (lncRNA)/microRNA(miRNA)/mRNA triplets contribute to cancer biology. However, identifying significative triplets remains a major challenge for cancer research. The dynamic changes among factors of the triplets have been less understood. Here, by integrating target information and expression datasets, we proposed a novel computational framework to identify the triplets termed as “lncRNA-perturbated triplets”. We applied the framework to five cancer datasets in The Cancer Genome Atlas (TCGA) project and identified 109 triplets. We showed that the paired miRNAs and mRNAs were widely perturbated by lncRNAs in different cancer types. LncRNA perturbators and lncRNA-perturbated mRNAs showed significantly higher evolutionary conservation than other lncRNAs and mRNAs. Importantly, the lncRNA-perturbated triplets exhibited high cancer specificity. The pan-cancer perturbator OIP5-AS1 had higher expression level than that of the cancer-specific perturbators. These lncRNA perturbators were significantly enriched in known cancer-related pathways. Furthermore, among the 25 lncRNA in the 109 triplets, lncRNA SNHG7 was identified as a stable potential biomarker in lung adenocarcinoma (LUAD) by combining the TCGA dataset and two independent GEO datasets. Results from cell transfection also indicated that overexpression of lncRNA SNHG7 and TUG1 enhanced the expression of the corresponding mRNA PNMA2 and CDC7 in LUAD. Our study provides a systematic dissection of lncRNA-perturbated triplets and facilitates our understanding of the molecular roles of lncRNAs in cancers.


2017 ◽  
Vol 43 (3) ◽  
pp. 1090-1099 ◽  
Author(s):  
Zhonghua Jiang ◽  
Tingting Yu ◽  
Zhining Fan ◽  
Hongmei Yang ◽  
Xin Lin

Background/Aims: Krüppel-like factor (KLF) 7 protein is a member of the KLF transcription factor family, which plays important roles in regulating the expression of genes involved in cell growth, proliferation, differentiation and metabolism. However, the role of KLF7 in gastric cancer (GC) is unknown. The aim of this study is to explore the role of KLF7 in GC and its correlation with clinicopathological characteristics and prognosis of GC patients. Methods: We first systematically evaluated dysregulation of the KLF family in The Cancer Genome Atlas (TCGA) GC database. Then, 252 patients who underwent surgery for GC were enrolled to validate the results from the TCGA. Functional studies were also used to explore the role of KLF7 in GC. Results: In the TCGA database, we found that KLF7 was an independent predictor for survival by both univariate and multivariate analysis (P<0.05). In a validation cohort, KLF7 expression was significantly increased in GC tissues compared with adjacent normal controls (P=0.013). High KLF7 expression correlated with inferior prognostic factors, such as T stage (P=0.022), N stage (P =0.005) and lymphovascular invasion (P=0.009). Furthermore, we observed a strong negative correlation between KLF7 expression and 5-year overall survival and disease-free survival in GC patients (P<0.05). Moreover, our in vitro studies showed a notable decrease in migration in KLF7 knockdown cells. Conclusion: KLF7 has an important role in GC progression, as it inhibits GC cell migration and may serve as a prognostic marker.


2020 ◽  
Vol 21 (10) ◽  
pp. 3522
Author(s):  
Nair Lopes ◽  
Margareta P. Correia ◽  
Rui Henrique ◽  
Carmen Jerónimo

Oesophageal cancer is a life-threatening disease, accounting for high mortality rates. The poor prognosis of this malignancy is mostly due to late diagnosis and lack of effective therapies for advanced disease. Epigenetic alterations may constitute novel and attractive therapeutic targets, owing to their ubiquity in cancer and their reversible nature. Herein, we offer an overview of the most important studies which compared differences in expression of enzymes that mediate epigenetic alterations between oesophageal cancer and normal mucosa, as well as in vitro data addressing the role of these genes/proteins in oesophageal cancer. Furthermore, The Cancer Genome Atlas database was interrogated for the correlation between expression of these epigenetic markers and standard clinicopathological features. We concluded that most epigenetic players studied thus far are overexpressed in tumours compared to normal tissue. Furthermore, functional assays suggest an oncogenic role for most of those enzymes, supporting their potential as therapeutic targets in oesophageal cancer.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3439 ◽  
Author(s):  
Niklas Klümper ◽  
Marthe von Danwitz ◽  
Johannes Stein ◽  
Doris Schmidt ◽  
Anja Schmidt ◽  
...  

Downstream neighbor of Son (DONSON) plays a crucial role in cell cycle progression and in maintaining genomic stability, but its role in prostate cancer (PCa) development and progression is still underinvestigated. Methods: DONSON mRNA expression was analyzed with regard to clinical-pathological parameters and progression using The Cancer Genome Atlas (TCGA) and two publicly available Gene Expression Omnibus (GEO) datasets of PCa. Afterwards, DONSON protein expression was assessed via immunohistochemistry on a comprehensive tissue microarray (TMA). Subsequently, the influence of a DONSON-knockdown induced by the transfection of antisense-oligonucleotides on proliferative capacity and metastatic potential was investigated. DONSON was associated with an aggressive phenotype in the PCa TCGA cohort, two GEO PCa cohorts, and our PCa TMA cohort as DONSON expression was particularly strong in locally advanced, metastasized, and dedifferentiated carcinomas. Thus, DONSON expression was notably upregulated in distant and androgen-deprivation resistant metastases. In vitro, specific DONSON-knockdown significantly reduced the migration capacity in the PCa cell lines PC-3 and LNCaP, which further suggests a tumor-promoting role of DONSON in PCa. In conclusion, the results of our comprehensive expression analyses, as well as the functional data obtained after DONSON-depletion, lead us to the conclusion that DONSON is a promising prognostic biomarker with oncogenic properties in PCa.


2021 ◽  
Vol 22 (18) ◽  
pp. 10172
Author(s):  
Saverio Candido ◽  
Barbara Maria Rita Tomasello ◽  
Alessandro Lavoro ◽  
Luca Falzone ◽  
Giuseppe Gattuso ◽  
...  

IL-6 pathway is abnormally hyperactivated in several cancers triggering tumor cell growth and immune system inhibition. Along with genomic mutation, the IL6 pathway gene expression can be affected by DNA methylation, microRNAs, and post-translational modifications. Computational analysis was performed on the Cancer Genome Atlas (TCGA) datasets to explore the role of IL6, IL6R, IL6ST, and IL6R transmembrane isoform expression and their epigenetic regulation in different cancer types. IL6 was significantly modulated in 70% of tumor types, revealing either up- or down-regulation in an approximately equal number of tumors. Furthermore, IL6R and IL6ST were downregulated in more than 10 tumors. Interestingly, the correlation analysis demonstrated that only the IL6R expression was negatively affected by the DNA methylation within the promoter region in most tumors. Meanwhile, only the IL6ST expression was extensively modulated by miRNAs including miR-182-5p, which also directly targeted all three genes. In addition, IL6 upregulated miR-181a-3p, mirR-214-3p, miR-18a-5p, and miR-938, which in turn inhibited the expression of IL6 receptors. Finally, the patients’ survival rate was significantly affected by analyzed targets in some tumors. Our results suggest the relevance of epigenetic regulation of IL6 signaling and pave the way for further studies to validate these findings and to assess the prognostic and therapeutic predictive value of these epigenetic markers on the clinical outcome and survival of cancer patients.


PeerJ ◽  
2016 ◽  
Vol 3 ◽  
pp. e1499 ◽  
Author(s):  
Jordan Anaya ◽  
Brian Reon ◽  
Wei-Min Chen ◽  
Stefan Bekiranov ◽  
Anindya Dutta

Numerous studies have identified prognostic genes in individual cancers, but a thorough pan-cancer analysis has not been performed. In addition, previous studies have mostly used microarray data instead of RNA-SEQ, and have not published comprehensive lists of associations with survival. Using recently available RNA-SEQ and clinical data from The Cancer Genome Atlas for 6,495 patients, we have investigated every annotated and expressed gene’s association with survival across 16 cancer types. The most statistically significant harmful and protective genes were not shared across cancers, but were enriched in distinct gene sets which were shared across certain groups of cancers. These groups of cancers were independently recapitulated by both unsupervised clustering of Cox coefficients (a measure of association with survival) for individual genes, and for gene programs. This analysis has revealed unappreciated commonalities among cancers which may provide insights into cancer pathogenesis and rationales for co-opting treatments between cancers.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gaojianyong Wang ◽  
Dimitris Anastassiou

Abstract Analysis of large gene expression datasets from biopsies of cancer patients can identify co-expression signatures representing particular biomolecular events in cancer. Some of these signatures involve genomically co-localized genes resulting from the presence of copy number alterations (CNAs), for which analysis of the expression of the underlying genes provides valuable information about their combined role as oncogenes or tumor suppressor genes. Here we focus on the discovery and interpretation of such signatures that are present in multiple cancer types due to driver amplifications and deletions in particular regions of the genome after doing a comprehensive analysis combining both gene expression and CNA data from The Cancer Genome Atlas.


Sign in / Sign up

Export Citation Format

Share Document