scholarly journals Downstream Neighbor of SON (DONSON) Expression Is Enhanced in Phenotypically Aggressive Prostate Cancers

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3439 ◽  
Author(s):  
Niklas Klümper ◽  
Marthe von Danwitz ◽  
Johannes Stein ◽  
Doris Schmidt ◽  
Anja Schmidt ◽  
...  

Downstream neighbor of Son (DONSON) plays a crucial role in cell cycle progression and in maintaining genomic stability, but its role in prostate cancer (PCa) development and progression is still underinvestigated. Methods: DONSON mRNA expression was analyzed with regard to clinical-pathological parameters and progression using The Cancer Genome Atlas (TCGA) and two publicly available Gene Expression Omnibus (GEO) datasets of PCa. Afterwards, DONSON protein expression was assessed via immunohistochemistry on a comprehensive tissue microarray (TMA). Subsequently, the influence of a DONSON-knockdown induced by the transfection of antisense-oligonucleotides on proliferative capacity and metastatic potential was investigated. DONSON was associated with an aggressive phenotype in the PCa TCGA cohort, two GEO PCa cohorts, and our PCa TMA cohort as DONSON expression was particularly strong in locally advanced, metastasized, and dedifferentiated carcinomas. Thus, DONSON expression was notably upregulated in distant and androgen-deprivation resistant metastases. In vitro, specific DONSON-knockdown significantly reduced the migration capacity in the PCa cell lines PC-3 and LNCaP, which further suggests a tumor-promoting role of DONSON in PCa. In conclusion, the results of our comprehensive expression analyses, as well as the functional data obtained after DONSON-depletion, lead us to the conclusion that DONSON is a promising prognostic biomarker with oncogenic properties in PCa.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoshu Bi ◽  
Donglin Zhu ◽  
Yunyi Bian ◽  
Yiwei Huang ◽  
Cheng Zhan ◽  
...  

Abstract Background Lung adenocarcinoma (LUAD) is one of the most common malignancies worldwide. However, the molecular mechanism of LUAD tumorigenesis and development remains unclear. The purpose of this study was to comprehensively illustrate the role of GTF2E2 in the growth and progression of LUAD. Methods and materials We obtained the mRNA expression data from The Cancer Genome Atlas, Gene Expression Omnibus database, and our institution. Systematic bioinformatical analyses were performed to investigate the expression and prognostic value of GTF2E2 in LUAD. The results were validated by immunohistochemistry and qPCR. The effect of knocking down GTF2E2 using two short hairpin RNAs was investigated by in vitro and in vivo assays. Subsequently, shotgun liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) analyses were applied to identified potential GTF2E2 interacting proteins, and the downstream molecular mechanisms of GTF2E2-signaling were further explored by a series of cellular functional assays. Results We found that GTF2E2 expression was significantly increased in LUAD tissue compared with adjacent normal tissue and was negatively associated with patients’ overall survival. Besides, we demonstrated that GTF2E2 knockdown inhibited LUAD cell proliferation, migration, invasion, and promote apoptosis in vitro, as well as attenuated tumor growth in vivo. Results from LC–MS/MS suggested that RPS4X might physically interact with GTF2E2 and mediated GTF2E2’s regulatory effect on LUAD development through the mTOR pathway. Conclusion Our findings indicate that GTF2E2 promotes LUAD development by activating RPS4X. Therefore, GTF2E2 might serve as a promising biomarker for the diagnosis and prognosis of LUAD patients, thus shedding light on the precise and personalized therapy for LUAD in the future.


2018 ◽  
Vol 111 (7) ◽  
pp. 664-674 ◽  
Author(s):  
Rongqiang Yang ◽  
Steven W Li ◽  
Zirong Chen ◽  
Xin Zhou ◽  
Wei Ni ◽  
...  

Abstract Background The LKB1 tumor suppressor gene is commonly inactivated in non-small cell lung carcinomas (NSCLC), a major form of lung cancer. Targeted therapies for LKB1-inactivated lung cancer are currently unavailable. Identification of critical signaling components downstream of LKB1 inactivation has the potential to uncover rational therapeutic targets. Here we investigated the role of INSL4, a member of the insulin/IGF/relaxin superfamily, in LKB1-inactivated NSCLCs. Methods INSL4 expression was analyzed using global transcriptome profiling, quantitative reverse transcription PCR, western blotting, enzyme-linked immunosorbent assay, and RNA in situ hybridization in human NSCLC cell lines and tumor specimens. INSL4 gene expression and clinical data from The Cancer Genome Atlas lung adenocarcinomas (n = 515) were analyzed using log-rank and Fisher exact tests. INSL4 functions were studied using short hairpin RNA (shRNA) knockdown, overexpression, transcriptome profiling, cell growth, and survival assays in vitro and in vivo. All statistical tests were two-sided. Results INSL4 was identified as a novel downstream target of LKB1 deficiency and its expression was induced through aberrant CRTC-CREB activation. INSL4 was highly induced in LKB1-deficient NSCLC cells (up to 543-fold) and 9 of 41 primary tumors, although undetectable in all normal tissues except the placenta. Lung adenocarcinomas from The Cancer Genome Atlas with high and low INSL4 expression (with the top 10th percentile as cutoff) showed statistically significant differences for advanced tumor stage (P < .001), lymph node metastasis (P = .001), and tumor size (P = .01). The INSL4-high group showed worse survival than the INSL4-low group (P < .001). Sustained INSL4 expression was required for the growth and viability of LKB1-inactivated NSCLC cells in vitro and in a mouse xenograft model (n = 5 mice per group). Expression profiling revealed INSL4 as a critical regulator of cell cycle, growth, and survival. Conclusions LKB1 deficiency induces an autocrine INSL4 signaling that critically supports the growth and survival of lung cancer cells. Therefore, aberrant INSL4 signaling is a promising therapeutic target for LKB1-deficient lung cancers.


2017 ◽  
Vol 43 (3) ◽  
pp. 1090-1099 ◽  
Author(s):  
Zhonghua Jiang ◽  
Tingting Yu ◽  
Zhining Fan ◽  
Hongmei Yang ◽  
Xin Lin

Background/Aims: Krüppel-like factor (KLF) 7 protein is a member of the KLF transcription factor family, which plays important roles in regulating the expression of genes involved in cell growth, proliferation, differentiation and metabolism. However, the role of KLF7 in gastric cancer (GC) is unknown. The aim of this study is to explore the role of KLF7 in GC and its correlation with clinicopathological characteristics and prognosis of GC patients. Methods: We first systematically evaluated dysregulation of the KLF family in The Cancer Genome Atlas (TCGA) GC database. Then, 252 patients who underwent surgery for GC were enrolled to validate the results from the TCGA. Functional studies were also used to explore the role of KLF7 in GC. Results: In the TCGA database, we found that KLF7 was an independent predictor for survival by both univariate and multivariate analysis (P<0.05). In a validation cohort, KLF7 expression was significantly increased in GC tissues compared with adjacent normal controls (P=0.013). High KLF7 expression correlated with inferior prognostic factors, such as T stage (P=0.022), N stage (P =0.005) and lymphovascular invasion (P=0.009). Furthermore, we observed a strong negative correlation between KLF7 expression and 5-year overall survival and disease-free survival in GC patients (P<0.05). Moreover, our in vitro studies showed a notable decrease in migration in KLF7 knockdown cells. Conclusion: KLF7 has an important role in GC progression, as it inhibits GC cell migration and may serve as a prognostic marker.


2020 ◽  
Vol 21 (10) ◽  
pp. 3522
Author(s):  
Nair Lopes ◽  
Margareta P. Correia ◽  
Rui Henrique ◽  
Carmen Jerónimo

Oesophageal cancer is a life-threatening disease, accounting for high mortality rates. The poor prognosis of this malignancy is mostly due to late diagnosis and lack of effective therapies for advanced disease. Epigenetic alterations may constitute novel and attractive therapeutic targets, owing to their ubiquity in cancer and their reversible nature. Herein, we offer an overview of the most important studies which compared differences in expression of enzymes that mediate epigenetic alterations between oesophageal cancer and normal mucosa, as well as in vitro data addressing the role of these genes/proteins in oesophageal cancer. Furthermore, The Cancer Genome Atlas database was interrogated for the correlation between expression of these epigenetic markers and standard clinicopathological features. We concluded that most epigenetic players studied thus far are overexpressed in tumours compared to normal tissue. Furthermore, functional assays suggest an oncogenic role for most of those enzymes, supporting their potential as therapeutic targets in oesophageal cancer.


2018 ◽  
Vol 33 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Min-hang Zhou ◽  
Hong-wei Zhou ◽  
Mo Liu ◽  
Jun-zhong Sun

Purpose: The role of microRNA (miRNA) in cholangiocarcinoma was not clear. The aim of this study was to find the potential diagnostic and prognostic miRNA in cholangiocarcinoma patients. Methods: The miRNA expression profiles in cholangiocarcinoma patients from The Cancer Genome Atlas and Gene Expression Omnibus (GSE53870) were analyzed. The comparison of overall survival was performed using the Kaplan–Meier method. The targeted genes of prognostic miRNA were identified in miRanda, PicTar, or TargetScan, and their cell signaling pathways were analyzed by the Database for Annotation, Visualization and Integrated Discovery. Results: In The Cancer Genome Atlas and the Gene Expression Omnibus miRNA dataset, miR-92b and miR-99a were found with concordant directionality, up-regulated and down-regulated, respectively. In The Cancer Genome Atlas survival data, patients with the high level of miR-99b had obviously shorter overall survival time ( P=0.038). However, the level of miR-99a was not found to be significant. The 17 shared target genes of miR-92b were identified, such as DAB21IP, BCL21L11, SPHK2, PER2, and TSC1. The related pathways included positive regulation of transcription, positive regulation of cellular biosynthetic process, regulation of programmed cell death, etc. Conclusion: miR-92b was up-regulated in cholangiocarcinoma compared with normal controls. The high level of miR-92b was associated with adverse outcomes in cholangiocarcinoma patients, which might be partly explained by the targeted genes of miR-92b and their signaling pathways.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaolong Zhu ◽  
Hui Yang ◽  
Mengying Zhang ◽  
Xingwei Wu ◽  
Lan Jiang ◽  
...  

Abstract Background Glioma is a common type of malignant brain tumor with a high mortality and relapse rate. The endosomal sorting complex required for transport (ESCRT) has been reported to be involved in tumorigenesis. However, the molecular mechanisms have not been clarified. Methods Bioinformatics was used to screen the ESCRT subunits highly expressed in glioma tissues from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The function of the ESCRT subunits in glioma cells was examined in vitro. Transcriptome sequencing analyzed the target genes and signaling pathways affected by the ESCRT subunit. Finally, the relationship between m6A (N6-methyladenosine) modification and high expression of the ESCRT subunit was studied. Results VPS25 was upregulated in glioma tissues, which was correlated with poor prognosis in glioma patients. Furthermore, VPS25 knockdown inhibited the proliferation, blocked the cell cycle, and promoted apoptosis in glioma cells. Meanwhile, VPS25 induced a G0/G1 phase arrest of the cell cycle in glioma cells by directly mediating p21, CDK2, and cyclin E expression, and JAK-signal transducer and activator of transcription (STAT) activation. Finally, YTHDC1 inhibited glioma proliferation by reducing the expression of VPS25. Conclusion These results suggest that VPS25 is a promising prognostic indicator and a potential therapeutic target for glioma.


2020 ◽  
Author(s):  
Marta Chiavari ◽  
Gabriella Maria Pia Ciotti ◽  
Francesco Canonico ◽  
Fabio Altieri ◽  
Pierluigi Navarra ◽  
...  

Abstract Background: Glioblastoma (GB - grade IV glioma) is the most aggressive and common cancer of central nervous system with an overall survival of 14-16 months. The GB tumor microenvironment includes cells of the innate immune system identified as glioma-associated microglia/macrophages (GAMs). It is known that between GAMs and GB cells there is a double interaction, but the role of GAMs is still poorly characterized. The endoplasmic reticulum (ER) protein ERp57, also known as PDIA3, is a thiol oxidoreductase with main function related on glycoprotein folding in endoplasmic reticulum. However, PDIA3 shows different functions. In fact, the various subcellular localizations and binding partners of PDIA3 affect numerous physiological processes and diseases: different regulation and modulation of PDIA3 has been reported in multiple pathologies including neurodegenerative diseases and cancer. Methods: In the present work, we evaluated in both GB cells and microglia-macrophage cells the expression of PDIA3 using specimens collected after surgical from 18 GB patients. In addition, we studied in vitro microglia-glioma interaction to determine the role of PDIA3 in viability and the activation of both GB and microglia cells. The study was carried using PDIA3-silenced T98G cells and/or using a pharmacological inhibitor of PDIA3 activity (Punicalagin-PUN).Results: We initially investigated the role of the PDIA3 in GB survival by inquiring The Cancer Genome Atlas dataset. The results indicated that 352 out of 690 patients reported over-expression of PDIA3, which significantly correlated with a ~55% reduction of overall survival. Subsequently, for the first time, we investigated the PDIA3 expression in the tumor and the nearby parenchyma of 18 GB patients and our data showed a significant upregulation (15% vs 10%) of ERp57/PDIA3 in GAMs of tumor specimens respect the microglia present in parenchyma. In addition, we show that conditioned medium (CMs) obtained from both wild type T98G and PDIA3 silenced T98G induced an activation of microglia cells, but the PDIA3 silenced-T98G CMs significant limited the microglia pro-tumor activation probably through a IL-6-STAT3-PDIA3 dependent mechanism. Conclusion: Our data support the relevant role of PDIA3 expression in GB pathology and link the different activation of microglia to a mechanism a IL-6-STAT3-PDIA3 dependent.


2021 ◽  
Author(s):  
Rogayeh Soltani ◽  
Mohammad Amini ◽  
Marziyeh Mazaheri Moghaddam ◽  
Asiyeh Jebelli ◽  
Sahar Ahmadiyan ◽  
...  

Abstract Background: Aberrant expression of long noncoding RNAs (lncRNAs) is associated with the progression of human cancers, including gastric cancer (GC). The function of lncRNA DLGAP1-AS2, as an oncogene, has been identified in glioma, hepatocellular carcinoma, and cholangiocarcinoma but not in other malignancies. Therefore, this study was aimed to explore the association of DLGAP1-AS2 with gastric tumorigenesis and beyond.Methods and Results: The expression level of DLGAP1-AS2 was prevaluated in GC datasets from Gene Expression Omnibus (GEO). Moreover, qRT-PCR experiment was performed on 25 paired GC and adjacent normal tissue samples. The Cancer Genome Atlas (TCGA) data were also analyzed for further validations. Consistent with data obtained from GEO datasets, qRT-PCR results revealed that DLGAP1-AS2 was significantly (p < 0.0032) upregulated in GC specimens compared to normal samples, which was additionally confirmed using TCGA analysis (p<0.0001). DLGAP1-AS2 expression level was also correlated with age (p =0.0008), lymphatic and vascular invasion (p =0.0415) in internal samples. Also, a significant correlation was found between DLGAP1-AS2 and YAP1 expression, as its valid downstream target, in GC samples. Besides, analysis of other prevalent tumor entities using TCGA illustrated the significant overexpression of DLGAP1-AS2 in lung, colorectal, and prostate cancers, further indicating its promise as an oncogene. Moreover, ROC curve analysis showed the high accuracy of the DLGAP1-AS2 expression pattern as a diagnostic biomarker for gastric and colorectal cancers. Conclusion: Our findings indicated that DLGAP1-AS2 might display oncogenic property in gastric tumorigenesis and be suggested as a therapeutic and diagnostic target.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zheng Zhang ◽  
Shuangshuang Zhao ◽  
Haizhen Yang ◽  
Yanwei Chen ◽  
Huahui Feng ◽  
...  

Despite accumulating cell- or animal-based experiments providing the relationship between Gasdermin E (GSDME) and human diseases, especially in malignant cancers, no pan-cancer analysis about the function of GSMDE in cancer management can be available up to date. Our research, for the first time, explored the potential carcinogenic role of GSDME across 33 tumors from the public platform of TCGA (The cancer genome atlas) database. GSDME is highly expressed in most malignant cancers, and obvious relationship exists between GSDME level and survival prognosis of cancer patients. The expression of GSDME was statically associated with the cancer-associated fibroblast infiltration in diverse cancer types, such as BLCA, CHOL, GBM, KIRC, LIHC, MESO, STAD, and UCEC. Furthermore, pyroptosis, sensory perception of sound, and defense response to bacterium were involved in the functional mechanisms of GSDME expression from GO analysis. Last but not the least, in vitro experiments were also performed to identify GSDME-induced pyroptosis. Our first pan-cancer analysis of GSDME not only broadens the understanding of the carcinogenic roles of GSDME but also provides a promising therapeutic strategy for benefiting an increasing number of cancerous patients based on GSDME-induced pyroptosis.


2018 ◽  
Vol 40 (5) ◽  
pp. 680-686
Author(s):  
Hengli Ni ◽  
Lin Chen ◽  
Liming Song ◽  
Lina Sun ◽  
Hongxia Cui ◽  
...  

AbstractPreviously we reported that ErbB4 played a protective role in chronic liver injury and hepatocellular carcinoma. Herein, we examined the role of ErbB4 in the development of colitis-associated cancer (CAC) in ErbB4 knockout mice models, in vitro cell lines and clinical samples. We found that ErbB4 deficiency may lead to more severe inflammation, slower recovery and the development of CAC. Further, loss of ErbB4 could activate Kras by upregulating rate-limiting enzymes in cholesterol metabolism pathway through interacting with the transcription factor Srebf1. In clinic samples, ErbB4 is downregulated in colonic tissues from patients with Crohn’s disease. And data from The Cancer Genome Atlas also showed significant negative correlation between ErbB4 and several cholesterol metabolic enzymes. In summary, our study uncovers ErbB4 as a protector in the development of CAC, for its loss could activate Kras by upregulating cholesterol metabolism.


Sign in / Sign up

Export Citation Format

Share Document