scholarly journals hZIP1 Inhibits Progression of Clear Cell Renal Cell Carcinoma by Suppressing NF-kB/HIF-1α Pathway

2021 ◽  
Vol 11 ◽  
Author(s):  
Bo Zhan ◽  
Xiao Dong ◽  
Yulin Yuan ◽  
Zheng Gong ◽  
Bohan Li

PurposeAccumulating literature has suggested that hZIP1 and HIF-1α play vital roles in the tumor process of clear cell renal cell carcinoma (ccRCC). However, the functional roles of hZIP1 and HIF-1α in ccRCC remain largely unknown.MethodsHIF-1α protein level was evaluated by a western blot in ccRCC tissues and cell lines. ccRCC cell lines were transfected with HIF-1α-siRNA to downregulate the expression level of HIF-1α. Then the proliferative, migratory and invasive abilities of ccRCC cells in vitro were detected by real-time cell analysis (RTCA) assay, wound healing assay and transwell assay, respectively. The role of HIF-1α in vivo was explored by tumor implantation in nude mice. Then the effect on glycolysis‐related proteins was performed by western blot after hZIP1 knockdown (overexpression) or HIF-1α knockdown. The effect on NF‐kB pathway was detected after hZIP1 overexpression.ResultsHIF-1α was markedly downregulated in ccRCC tissues compared with normal areas. But HIF-1α presented almost no expression in HK-2 and ACHN cells. Immunofluorescence indicated HIF-1α and PDK1 expression in both the cytoplasm and nucleus in ccRCC cells. Downregulation of HIF-1α suppressed ccRCC cell proliferation, migration, and invasion and resulted in smaller implanted tumors in nude mice. Furthermore, hZIP1 knockdown elevated HIF-1α protein levels and PDK1 protein levels in ccRCC cells. Interestingly, a sharp downregulated expression of HIF-1α was observed after hZIP1 overexpression in OSRC-2 and 786-O cells, which resulted from a downtrend of NF-kB1 moving into the cell nucleus.ConclusionOur work has vital implications that hZIP1 suppresses ccRCC progression by inhibiting NF-kB/HIF-1α pathway.

2015 ◽  
Vol 69 (6) ◽  
pp. 497-504 ◽  
Author(s):  
Zhengzuo Sheng ◽  
Yang Liu ◽  
Caipeng Qin ◽  
Zhenhua Liu ◽  
Yeqing Yuan ◽  
...  

OBJECTIVE:To investigate if IgG can be expressed in clear cell renal cell carcinoma (cRCC) , and the expression of IgG is involved in the cancer progression. If IgG expression can serve as a potential target in cancer therapies and be used for judging the prognosis.MATERIALS AND METHODS:By immunohistochemistry, we detected IgG in cRCC tissues(75 cRCC tissues and75 adjacent normal kidney tissues). Immunofluorescence and Western blot was used to detect the IgG in cRCC cell lines (786-0, ACHN and CAKI-I). By RT-PCR, the functional transcript of IgG heavy chain was detected. Knockdown of IgG was to analyze the proliferation, migration and invasion ability by CCK8, Transwell and Matrigel and apoptosis in cRCC cell lines.RESULTS:By immunohistochemistry, we found strong staining of IgG in 66 cases of 75 cRCC tissues and 63 cases of 75 adjacent normal kidney tissues. Immunofluorescence and Western blot was found IgG in cRCC cell lines. Knock-down IgG in cRCC cell lines resulted in significant inhibition of cell proliferation, migration and invasion, and the induction of apoptosis of the 786-0 cells. The immunohistochemistry analysis showed that high IgG expression significantly correlated with the poor differentiation and advanced stage of cRCC.CONCLUSION:IgG was over expressed in cRCC and was involved in the proliferation, migration and invasion of cancer cells. IgG expression may serve as a potential target in cancer therapies and could be used for judging the prognosis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Chao-Liang Xu ◽  
Lei Chen ◽  
Deng Li ◽  
Fei-Teng Chen ◽  
Ming-Lei Sha ◽  
...  

BackgroundClear cell renal cell carcinoma (ccRCC) is essentially a metabolic disorder characterized by reprogramming of several metabolic pathways. Acyl-coenzyme A thioesterases (ACOTs) are critical enzymes involved in fatty acid metabolism; however, the roles of ACOTs in ccRCC remain unclear. This study explored ACOTs expressions and their diagnostic and prognostic values in ccRCC.MethodsThree online ccRCC datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) were utilized to measure the expressions of ACOTs in paired normal and tumor tissues. Receiver operating characteristic (ROC) curves were depicted to assess the diagnostic values of ACOTs in ccRCC. Quantitative real-time PCR and immunohistochemical analysis were performed to validate the ACOT11 expression in ccRCC cell lines and clinical samples. Survival curves and Cox regression analysis were used to evaluate the predictive values of ACOTs in clinical outcome of ccRCC patients. Functional enrichment analyses and correlation analysis were carried out to predict the potential roles of ACOT8 in tumorigenesis and progression of ccRCC.ResultsACOT1/2/8/11/13 were found to be significantly downregulated in ccRCC samples. In particular, ACOT11 was decreased in almost every matched normal-tumor pair, and had extremely high diagnostic value as shown by ROC curve analysis (AUC = 0.964). The expression of ACOT11 was further verified in ccRCC cell lines and clinical samples at mRNA and protein levels. Furthermore, clinical correlation analysis and survival analysis indicated that ACOT8 was correlated with disease progression and was an independent predictor of unfavorable outcome in ccRCC. Moreover, functional analyses suggested potential roles of ACOT8 in the regulation of oxidative phosphorylation (OXPHOS), and correlation analysis revealed an association between ACOT8 and ferroptosis-related genes in ccRCC.ConclusionOur study revealed that ACOT11 and ACOT8 are promising biomarkers for diagnosis and prognosis of ccRCC, respectively, and ACOT8 may affect ccRCC development and progression through the regulation of OXPHOS and ferroptosis. These findings may provide new strategies for precise diagnosis and personalized therapy of ccRCC.


2018 ◽  
Vol 48 (3) ◽  
pp. 1075-1087 ◽  
Author(s):  
Yan Qu ◽  
Haibing Xiao ◽  
Wen Xiao ◽  
Zhiyong Xiong ◽  
Wenjun Hu ◽  
...  

Background/Aims: MIAT is a long noncoding RNA (lncRNA) involved in cell proliferation and the development of tumor. However, the exact effects and molecular mechanisms of MIAT in clear cell renal cell carcinoma (ccRCC) progression are still unknown. Methods: We screened the lncRNAs’ profile of ccRCC in The Cancer Genome Atlas database, and then examined the expression levels of lncRNA MIAT in 45 paired ccRCC tissue specimens and in cell lines by q-RT-PCR. MTS, colony formation, EdU, and Transwell assays were performed to examine the effect of MIAT on proliferation and metastasis of ccRCC. Western blot and luciferase assays were performed to determine whether MIAT can regulate Loxl2 expression by competitively binding miR-29c in ccRCC. Results: MIAT was up-regulated in ccRCC tissues and cell lines. High MIAT expression correlated with worse clinicopathological features and shorter survival rate. Functional assays showed that knockdown of MIAT inhibited renal cancer cell proliferation and metastasis in vitro and in vivo. Luciferase and western blot assays further confirmed that miR-29c binds with MIAT. Additionally, the correlation of miR-29c with MIAT and Loxl2 was further verified in patients' samples. Conclusion: Our data indicated that MIAT might be an oncogenic lncRNA that promoted proliferation and metastasis of ccRCC, and could be a potential therapeutic target in human ccRCC.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4973
Author(s):  
Yaroslava Karpova ◽  
Danping Guo ◽  
Peter Makhov ◽  
Adam M. Haines ◽  
Dmitriy A. Markov ◽  
...  

Poly(ADP-ribose) polymerase 1 (PARP-1) and glycohydrolase (PARG) enzymes regulate chromatin structure, transcription activation, and DNA repair by modulating poly(ADP-ribose) (pADPr) level. Interest in PARP-1 inhibitors has soared recently with the recognition of their antitumor efficacy. We have shown that the development of clear cell renal cell carcinoma (ccRCC) is associated with extreme accumulation of pADPr caused by the enhanced expression of PARP-1 and decreased PARG levels. The most severe misregulation of pADPr turnover is found in ccRCC specimens from metastatic lesions. Both, classical NAD-like and non-NAD-like PARP-1 inhibitors reduced viability and clonogenic potential of ccRCC cell lines and suppressed growth of ccRCC xenograft tumors. However, classical NAD-like PARP-1 inhibitors affected viability of normal kidney epithelial cells at high concentrations, while novel non-NAD-like PARP-1 inhibitors exhibited activity against malignant cells only. We have also utilized different approaches to reduce the pADPr level in ccRCC cells by stably overexpressing PARG and demonstrated the prominent antitumor effect of this “back-to-normal” intervention. We also generated ccRCC cell lines with stable overexpression of PARG under doxycycline induction. This genetic approach demonstrated significantly affected malignancy of ccRCC cells. Transcriptome analysis linked observed phenotype with changes in gene expression levels for lipid metabolism, interferon signaling, and angiogenesis pathways along with the changes in expression of key cancer-related genes.


2021 ◽  
pp. 1-10
Author(s):  
Yifei Liu ◽  
Honglin Nie ◽  
Yubo Zhang ◽  
Na Zhang ◽  
Miaomiao Han ◽  
...  

A number of studies reported that miR-224-5p is involved in a variety of cancer-related cellular processes, yet its physiological role in clear cell renal cell carcinoma (ccRCC) remains unclear. In order to clarify the function of miR-224-5p in ccRCC, real-time quantitative-PCR was conducted to compare the expression of miR-224-5p in human normal renal tubular epithelial cell lines and ccRCC cell lines first, and a strikingly upregulated expression was observed in ccRCC cell lines. Inhibition of miR-224-5p expression by microRNA inhibitors could inhibit the proliferation, migration, and invasion of ccRCC cells. Besides, it was validated by dual-luciferase assay in which miR-224-5p directly targeted OCLN gene. The expression of OCLN was downregulated in ccRCC cells, and overexpression of miR-224-5p could inhibit the mRNA and protein expression levels of OCLN. Overexpression of OCLN could reduce the proliferation, migration, and invasion of ccRCC cells, while overexpressed miR-224-5p could partially reverse that inhibitory effect. Therefore, the promotive effect of miR-224-5p on the proliferation, invasion, and migration of ccRCC cell lines was at least partly due to the inhibition of OCLN expression. These findings highlighted the important function of miR-224-5p, which was promoting cell proliferation, migration, and invasion by downregulating OCLN, in the pathogenesis of ccRCC, and provided a potential treatment strategy.


Biomolecules ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 113 ◽  
Author(s):  
Mazhar Pasha ◽  
Siveen K. Sivaraman ◽  
Ronald Frantz ◽  
Abdelali Agouni ◽  
Shankar Munusamy

Clear cell renal cell carcinoma (ccRCC) is the most common and lethal form of urological cancer diagnosed globally. Mutations of the von Hippel-Lindau (VHL) tumor-suppressor gene and the resultant overexpression of hypoxia-inducible factor (HIF)-1α protein are considered hallmarks of ccRCC. Persistently activated HIF-1α is associated with increased cell proliferation, angiogenesis, and epithelial–mesenchymal transition (EMT), consequently leading to ccRCC progression and metastasis to other organs. However, the VHL status alone cannot predict the differential sensitivity of ccRCC to cancer treatments, which suggests that other molecular differences may contribute to the differential response of ccRCC cells to drug therapies. In this study, we investigated the response to metformin (an antidiabetic drug) of two human ccRCC cell lines Caki-1 and Caki-2, which express wild-type VHL. Our findings demonstrate a differential response between the two ccRCC cell lines studied, with Caki-2 cells being more sensitive to metformin compared to Caki-1 cells, which could be linked to the differential expression of HIF-1 despite both cell lines carrying a wild-type VHL. Our study unveils the therapeutic potential of metformin to inhibit the progression of ccRCC in vitro. Additional preclinical and clinical studies are required to ascertain the therapeutic efficacy of metformin against ccRCC.


IUBMB Life ◽  
2020 ◽  
Vol 72 (6) ◽  
pp. 1220-1232
Author(s):  
Monika Swiatek ◽  
Iga Jancewicz ◽  
Jakkapong Kluebsoongnoen ◽  
Renata Zub ◽  
Anna Maassen ◽  
...  

2012 ◽  
Vol 46 (5) ◽  
pp. 358-364 ◽  
Author(s):  
José M. Giménez-Bachs ◽  
Antonio S. Salinas-Sánchez ◽  
Leticia Serrano-Oviedo ◽  
Syong H. Nam-Cha ◽  
Antonio Rubio-Del Campo ◽  
...  

2019 ◽  
Vol 38 (8) ◽  
pp. 927-937 ◽  
Author(s):  
C Liu ◽  
S Liu ◽  
L Wang ◽  
Y Wang ◽  
Y Li ◽  
...  

To investigate the effects of EH domain containing protein 2 (EHD2) on clear cell renal cell carcinoma (ccRCC) and provide new insights for the clinical treatment of rental cancer. Forty patients (26 males and 14 females, 62.4 ± 5.7 years old) with ccRCC were selected from January 2015 to December 2016 to serve as research subjects in this study. The EHD2 protein expression in the tumor tissues and adjacent healthy tissues of ccRCC patients were detected by Western Blot assay. The cells of ccRCC cell lines RLC-310 and 786-O were divided into normal control group (control), no-load control group (pLV), EHD2 overexpression group (pLV-EHD2), and EHD2 interference group (pLV-siEHD2). The expression levels of EHD2 protein in each group of cells were detected by western blot. The cell proliferation was detected by Cell Counting Kit-8 (CCK-8) assay. Wound healing assay was performed to check the cell migration ability. Transwell invasion assay was used to detect the cell invasion ability. Cell apoptosis was detected by flow cytometry. The expression level of EHD2 was significantly increased in pLV-EHD2 group and decreased in pLV-siEHD2 group compared with control group and pLV-siEHD2 group, indicating the successfully established EHD2 overexpression cell line and EHD2 RNA interference cell line. EHD2 overexpression enhanced the proliferation, invasion, and migration but inhibited the apoptosis of ccRCC cells, while EHD2 interference showed opposite functions. EHD2 interference can inhibit the development of ccRCC by inhibiting the proliferation, invasion, and migration, and EHD2 can potentially serve as a molecular target for the clinical treatment of ccRCC.


Sign in / Sign up

Export Citation Format

Share Document