scholarly journals Alternative Polyadenylation and Differential Regulation of Ucp1: Implications for Brown Adipose Tissue Thermogenesis Across Species

2021 ◽  
Vol 8 ◽  
Author(s):  
Wen-Hsin Lu ◽  
Yao-Ming Chang ◽  
Yi-Shuian Huang

Brown adipose tissue (BAT) is a thermogenic organ owing to its unique expression of uncoupling protein 1 (UCP1), which is a proton channel in the inner mitochondrial membrane used to dissipate the proton gradient and uncouple the electron transport chain to generate heat instead of adenosine triphosphate. The discovery of metabolically active BAT in human adults, especially in lean people after cold exposure, has provoked the “thermogenic anti-obesity” idea to battle weight gain. Because BAT can expend energy through UCP1-mediated thermogenesis, the molecular mechanisms regulating UCP1 expression have been extensively investigated at both transcriptional and posttranscriptional levels. Of note, the 3′-untranslated region (3′-UTR) of Ucp1 mRNA is differentially processed between mice and humans that quantitatively affects UCP1 synthesis and thermogenesis. Here, we summarize the regulatory mechanisms underlying UCP1 expression, report the number of poly(A) signals identified or predicted in Ucp1 genes across species, and discuss the potential and caution in targeting UCP1 for enhancing thermogenesis and metabolic fitness.

2021 ◽  
Author(s):  
Mingsheng Ye ◽  
Liping Luo ◽  
Qi Guo ◽  
Guanghua Lei ◽  
Chao Zeng ◽  
...  

Brown adipose tissue (BAT) is emerging as a target to beat obesity through the dissipation of chemical energy to heat. However, the molecular mechanisms of brown adipocyte thermogenesis remain to be further elucidated. Here, we show that KCTD10, a member of the polymerase delta-interacting protein 1 (PDIP1) family, was reduced in BAT by cold stress and a β3 adrenoceptor agonist. Moreover, KCTD10 level increased in the BAT of obese mice, and KCTD10 overexpression attenuates uncoupling protein 1 (UCP1) expression in primary brown adipocytes. BAT-specific KCTD10 knockdown mice had increased thermogenesis and cold tolerance protecting from high fat diet (HFD)-induced obesity. Conversely, overexpression of KCTD10 in BAT caused reduced thermogenesis, cold intolerance, and obesity. Mechanistically, inhibiting Notch signaling restored the KCTD10 overexpression suppressed thermogenesis. Our study presents that KCTD10 serves as an upstream regulator of notch signaling pathway to regulate BAT thermogenesis and whole-body metabolic function.


2014 ◽  
Vol 222 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Abdoulaye Diané ◽  
Nikolina Nikolic ◽  
Alexander P Rudecki ◽  
Shannon M King ◽  
Drew J Bowie ◽  
...  

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a widely distributed neuropeptide that acts as a neurotransmitter, neuromodulator, neurotropic factor, neuroprotectant, secretagogue,and neurohormone. Owing to its pleiotropic biological actions, knockout ofPacap(Adcyap1) has been shown to induce several abnormalities in mice such as impaired thermoregulation. However, the underlying physiological and molecular mechanisms remain unclear. A previous report has shown that cold-exposedPacapnull mice cannot supply appropriate levels of norepinephrine (NE) to brown adipocytes. Therefore, we hypothesized that exogenous NE would rescue the impaired thermogenic response ofPacapnull mice during cold exposure. We compared the adaptive thermogenic capacity ofPacap−/−toPacap+/+mice in response to NE when housed at room temperature (24 °C) and after a 3.5-week cold exposure (4 °C). Biochemical parameters, expression of thermogenic genes, and morphological properties of brown adipose tissue (BAT) and white adipose tissue (WAT) were also characterized. Results showed that there was a significant effect of temperature, but no effect of genotype, on the resting metabolic rate in conscious, unrestrained mice. However, the normal cold-induced increase in the basal metabolic rate and NE-induced increase in thermogenesis were severely blunted in cold-exposedPacap−/−mice. These changes were associated with altered substrate utilization, reduced β3-adrenergic receptor (β3-Ar(Adrb3)) and hormone-sensitive lipase (Hsl(Lipe)) gene expression, and increased fibroblast growth factor 2 (Fgf2) gene expression in BAT. Interestingly,Pacap−/−mice had depleted WAT depots, associated with upregulated uncoupling protein 1 expression in inguinal WATs. These results suggest that the impairment of adaptive thermogenesis inPacapnull mice cannot be rescued by exogenous NE perhaps in part due to decreased β3-Ar-mediated BAT activation.


2005 ◽  
Vol 22 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Martin Jastroch ◽  
Sven Wuertz ◽  
Werner Kloas ◽  
Martin Klingenspor

Uncoupling proteins (UCPs) increase proton leakage across the inner mitochondrial membrane. Thereby, UCP1 in brown adipose tissue dissipates proton motive force as heat. This mechanism of nonshivering thermogenesis is considered as a monophyletic trait of endothermic placental mammals that emerged about 140 million years ago and provided a crucial advantage for life in the cold. The paralogues UCP2 and UCP3 are probably not thermogenic proteins but convey mild uncoupling, which may serve to reduce the rate of mitochondrial reactive oxygen species production. Both are present in endotherms (mammals and birds), but so far only UCP2 has been identified in ectothermic vertebrates (fish and amphibia). The evolution of UCPs is of general interest in the search for the origin of mammalian UCP1-mediated nonshivering thermogenesis. We here show the presence of UCP1 and UCP3 in ectothermic teleost fish species using comparative genomics, phylogenetic inference, and gene expression analysis. In the common carp ( Cyprinus carpio), UCP1 is predominantly expressed in the liver and strongly diminished in response to cold exposure, thus contrasting the cold-induced expression of mammalian UCP1 in brown adipose tissue. UCP3 mRNA is only found in carp skeletal muscle with expression levels increased fivefold in response to fasting. Our findings disprove the monophyletic nature of UCP1 in placental mammals and demonstrate that all three members of the core UCP family were already present before the divergence of ray-finned and lobe-finned vertebrate lineages about 420 million years ago.


Author(s):  
Chang-Hyung Lee ◽  
Young-A Choi ◽  
Sung-Jin Heo ◽  
Parkyong Song

Brown adipose tissue (BAT) plays an important role in thermogenic regulation, which contributes to alleviating diet-induced obesity through uncoupling protein 1 (UCP1) expression. While cold exposure and physical exercise are known to increase BAT development and UCP1 expression, the contribution of hyperbaric oxygen (HBO) therapy to BAT maturation remains largely unknown. Here, we show that HBO treatment sufficiently increases BAT volumes and thermogenic protein levels in Sprague-Dawley rats. Through 18F-FDG PET/CT analysis, we found that exposure to high-pressure oxygen (1.5–2.5 ATA) for 7 consecutive days increased radiolabeled glucose uptake and BAT development to an extent comparable to cold exposure. Consistent with BAT maturation, thermogenic protein levels, such as those of UCP1 and peroxisome proliferator-activated receptor γ coactivator 1α (PGC−1α), were largely increased by HBO treatment. Taken together, we suggest HBO therapy as a novel method of inducing BAT development, considering its therapeutic potential for the treatment of metabolic disorders.


2021 ◽  
Author(s):  
Sarah Christine Sentis ◽  
Rebecca Oelkrug ◽  
Jens Mittag

A normal thyroid status is crucial for body temperature homeostasis, as thyroid hormone regulates both heat loss and conservation as well as heat production in thermogenic tissues. Brown adipose tissue (BAT) is the major site of non-shivering thermogenesis and an important target of thyroid hormone action. Thyroid hormone not only regulates the tissue’s sensitivity to sympathetic stimulation by norepinephrine, but also the expression of uncoupling protein 1, the key driver of BAT thermogenesis. Vice versa, sympathetic stimulation of BAT triggers the expression of deiodinase type II, an enzyme that enhances local thyroid hormone availability and signaling. This review summarizes the current knowledge on how thyroid hormone controls BAT thermogenesis, aiming to dissect the direct actions of the hormone in BAT and its indirect actions via the central nervous system, browning of white adipose tissue or heat loss over body surfaces. Of particular relevance is the apparent dose dependency of the observed effects, as we find that minor or moderate changes in thyroid hormone levels often have different effects as compared to high pharmacological doses. Moreover, we conclude that the more recent findings require a reevaluation of older studies, as key aspects such as heat loss or central BAT activation may not have received the necessary attention during the interpretation of these early findings. Finally, we provide a list of what we believe are the most relevant questions in the field that to date are still enigmatic and require further studies.


1987 ◽  
Vol 252 (5) ◽  
pp. R987-R993 ◽  
Author(s):  
I. Levin ◽  
P. Trayhurn

The effects of different food deprivation regimens on the thermogenic activity and capacity of brown adipose tissue in the golden hamster have been investigated. Thermogenesis in the tissue was assessed by measurements of tissue cytochrome-c oxidase activity, mitochondrial GDP binding, and the specific mitochondrial concentration of uncoupling protein. The thermogenic activity and capacity of brown adipose tissue were found to be markedly reduced in fasted or underweight hamsters. Measurements of cytochrome-c oxidase activity indicate that the reductions were caused exclusively by a loss in mitochondrial mass, uncoupling protein concentration and GDP binding to mitochondria remaining unchanged. The decrease in brown adipose tissue thermogenesis was associated with a reduction in the capacity for nonshivering thermogenesis in the whole animal. Hamsters recovered from weight losses without increasing their food intake, and the recovery was accompanied by a normalization in mitochondrial mass in brown adipose tissue. Mitochondrial mass was, however, restored only after 10 days of ad libitum refeeding. These results suggest that the reduction in energy expenditure in the fasted hamster could relate to a decrease in brown adipose tissue thermogenesis, in addition to the previously reported decreases in resting metabolic rate and locomotor activity. Reductions in thermogenesis may also represent a further mechanism by which energy stores recover in the golden hamster without postfast hyperphagia.


1986 ◽  
Vol 71 (3) ◽  
pp. 291-297 ◽  
Author(s):  
M. E. J. Lean ◽  
W. P. T. James ◽  
G. Jennings ◽  
P. Trayhurn

1. A solid-phase radioimmunoassay is described for the estimation of the uncoupling protein content of human brown adipose tissue mitochondria, as an index of thermogenic capacity. 2. The concentration of inner mitochondrial membrane uncoupling protein was measured in brown adipose tissue samples from 48 individuals who died suddenly. 3. The uncoupling protein content of axillary adipose tissue was greater than that of perirenal adipose tissue. 4. Variations in brown adipose tissue uncoupling protein content, which would be consistent with changing thermogenic requirements and capacity, were observed in different groups of subjects. Significantly lower concentrations were found in adults and in pre-term and stillborn infants than in older infants and children.


Author(s):  
Andreas D. Flouris ◽  
Petros C. Dinas ◽  
Angelica Valente ◽  
Cláudia Marlise Balbinotti Andrade ◽  
Nair Honda Kawashita ◽  
...  

AbstractUnderstanding the impact of regular exercise training on uncoupling protein 1 (UCP1) activity in classical brown adipose tissue (


Endocrinology ◽  
2010 ◽  
Vol 151 (9) ◽  
pp. 4236-4246 ◽  
Author(s):  
Aaron N. A. Verty ◽  
Andrew M. Allen ◽  
Brian J. Oldfield

Although the neuronal pathways within the hypothalamus critical in controlling feeding and energy expenditure and projecting to brown adipose tissue (BAT) have been identified and their peptidergic content characterized, endogenous action of such peptides in the control of BAT activity has not been elucidated. Here male Sprague Dawley rats received infusions of either melanin-concentrating hormone antagonist (SNAP-7941) (1 μg/μl · h), orexin A receptor antagonist (SB-334867-A; 1 μg/μl · h), combined SB-334867-A (1 μg/μl · h), and SNAP-7941 (1 μg/μl · h), or melanocortin-3/4 receptor antagonist (SHU9119) (1 μg/μl · h) via an indwelling cannula in the lateral ventricle attached to sc implanted osmotic minipump. BAT temperature, physical activity, body weight, food intake, and changes in uncoupling protein (UCP)-1 were measured. SB-334867-A and SNAP-7941 significantly increased BAT temperature and UCP1 expression and reduced food intake and body weight. Combined infusion of SB-334867-A and SNAP-7941 produced a pronounced response that was greater than the addition of the individual effects in all parameters measured. SHU9119 significantly decreased BAT temperature and UCP1 expression and increased feeding and body weight. In a second series of experiments, the effect of SB-334867-A and SNAP-7941 alone or combination on the expression of the Fos protein was determined. SB-334867-A and SNAP-7941 increased Fos expression in key hypothalamic and brainstem feeding-related regions. In combination, these antagonists produced a greater than additive elevation of Fos expression in most of the regions evaluated. These findings support a role for endogenous orexigenic and anorexigenic hypothalamic peptides acting in concert to create a thermogenic tone via BAT activity.


Sign in / Sign up

Export Citation Format

Share Document