scholarly journals Bmal1 Regulates Macrophage Polarize Through Glycolytic Pathway in Alcoholic Liver Disease

2021 ◽  
Vol 12 ◽  
Author(s):  
Yiwen Zhou ◽  
Meifei Wu ◽  
Lei Xu ◽  
Jieling Cheng ◽  
Jie Shen ◽  
...  

Hepatic macrophages play a critical role in inflammation caused by alcohol feeding. During this process, variation of macrophage phenotypes triggers inflammatory responses in a variety of ways. Moreover, there is increasing evidence that Brain and Muscle Arnt-Like Protein-1 (Bmal1) is regarded as a key regulator of macrophage transformation. In our study, Bmal1 was detected to be low expressed in EtOH-fed mice tissue samples and ethanol-induced RAW264.7 cells. After hepatic specific overexpression of Bmal1, M1 macrophage markers were evidently down-regulated, while M2 markers were on the contrary, showing an upward trend. Furthermore, alcoholic liver lesions were also improved in alcohol feeding mice with overexpressed Bmal1. On this basis, we also found that the glycolytic pathway can regulate macrophage polarization. In vitro, blocking of glycolytic pathway can significantly inhibit M1-type polarization. Importantly, glycolysis levels were also restrained after Bmal1 overexpression. What’s more, Bmal1 exerts a negative regulatory effect on glycolysis by interacting with S100A9 protein. Further studies showed that the alleviation of alcoholic liver disease (ALD) by Bmal1 was associated with glycolytic pathway suppression and M1 macrophage polarization. In summary, we demonstrated that Bmal1 is a gene capable of relieving ALD, and this effect may provide new insights for altering macrophage phenotypes to regulate inflammatory responses in ALD.

2022 ◽  
Vol 23 (2) ◽  
pp. 774
Author(s):  
Yoon Mee Yang ◽  
Ye Eun Cho ◽  
Seonghwan Hwang

Alcoholic liver disease (ALD) is characterized by the injury, inflammation, and scarring in the liver owing to excessive alcohol consumption. Currently, ALD is a leading cause for liver transplantation. Therefore, extensive studies (in vitro, in experimental ALD models and in humans) are needed to elucidate pathological features and pathogenic mechanisms underlying ALD. Notably, oxidative changes in the liver have been recognized as a signature trait of ALD. Progression of ALD is linked to the generation of highly reactive free radicals by reactions involving ethanol and its metabolites. Furthermore, hepatic oxidative stress promotes tissue injury and, in turn, stimulates inflammatory responses in the liver, forming a pathological loop that promotes the progression of ALD. Accordingly, accumulating further knowledge on the relationship between oxidative stress and inflammation may help establish a viable therapeutic approach for treating ALD.


2020 ◽  
Author(s):  
Peng Cheng ◽  
Jianwei Xie ◽  
Zhiyong Liu ◽  
Jian Wang

Abstract Macrophage M1 polarization mediates inflammatory responses and tissue damage. Recently, aldose reductase (AR) has been shown to play a critical role in of M1 polarization in macrophages. However, the underlying mechanisms are unknown. Here, we demonstrated, for the first time, that AR deficiency repressed the induction of inducible nitric oxide synthase in lipopolysaccharide (LPS)-stimulated macrophages via activation of autophagy. This suppression was related to a defect in the inhibitor of nuclear factor κB (NF-κB) kinase (IKK) complex in the classical NF-κB pathway. However, the mRNA levels of the IKKβ and IKKγ were not reduced in LPS-treated AR knockout (KO) macrophages, indicating that their proteins were downregulated at the post-transcriptional level. We discovered that LPS stimuli induced the recruitment of more beclin1 and increased autophagosome formation in AR-deficient macrophages. Blocking autophagy by 3-methyladenine and ammonium chloride treatment restored IKKβ and IKKγ protein levels and increased nitric oxide synthase production in LPS-stimulated AR-deficient macrophages. More assembled IKKβ and IKKγ undergo ubiquitination and recruit the autophagic adaptor p62 in LPS-induced AR KO macrophages, promoting their delivery to autophagosomes and lysosomes. Collectively, these findings suggest that AR deficiency involves in the regulation of NF-κB signaling, and extends the role of selective autophagy in fine-tuned M1 macrophage polarization.


2021 ◽  
Vol 22 (9) ◽  
pp. 4370
Author(s):  
Cássia de Fáveri ◽  
Paula M. Poeta Fermino ◽  
Anna P. Piovezan ◽  
Lia K. Volpato

The pathogenesis of endometriosis is still controversial, although it is known that the inflammatory immune response plays a critical role in this process. The resolution of inflammation is an active process where the activation of endogenous factors allows the host tissue to maintain homeostasis. The mechanisms by which pro-resolving mediators (PRM) act in endometriosis are still little explored. Thus, this integrative review aims to synthesize the available content regarding the role of PRM in endometriosis. Experimental and in vitro studies with Lipoxin A4 demonstrate a potential inhibitory effect on endometrial lesions’ progression, attenuating pro-inflammatory and angiogenic signals, inhibiting proliferative and invasive action suppressing intracellular signaling induced by cytokines and estradiol, mainly through the FPR2/ALX. Investigations with Resolvin D1 demonstrated the inhibition of endometrial lesions and decreased pro-inflammatory factors. Annexin A1 is expressed in the endometrium and is specifically present in women with endometriosis, although the available studies are still inconsistent. Thus, we believe there is a gap in knowledge regarding the PRM pathways in patients with endometriosis. It is important to note that these substances’ therapeutic potential is evident since the immune and abnormal inflammatory responses play an essential role in endometriosis development and progression.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jie Yu ◽  
Peiwei Chai ◽  
Minyue Xie ◽  
Shengfang Ge ◽  
Jing Ruan ◽  
...  

Abstract Background Histone lactylation, a metabolic stress-related histone modification, plays an important role in the regulation of gene expression during M1 macrophage polarization. However, the role of histone lactylation in tumorigenesis remains unclear. Results Here, we show histone lactylation is elevated in tumors and is associated with poor prognosis of ocular melanoma. Target correction of aberrant histone lactylation triggers therapeutic efficacy both in vitro and in vivo. Mechanistically, histone lactylation contributes to tumorigenesis by facilitating YTHDF2 expression. Moreover, YTHDF2 recognizes the m6A modified PER1 and TP53 mRNAs and promotes their degradation, which accelerates tumorigenesis of ocular melanoma. Conclusion We reveal the oncogenic role of histone lactylation, thereby providing novel therapeutic targets for ocular melanoma therapy. We also bridge histone modifications with RNA modifications, which provides novel understanding of epigenetic regulation in tumorigenesis.


2018 ◽  
Vol 102 ◽  
pp. S708
Author(s):  
Ivan Linares ◽  
Agata Bartczak ◽  
Kaveh Farrokhi ◽  
Dagmar Kollmann ◽  
Moritz Kaths ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A900-A900
Author(s):  
Ronghua Zhang ◽  
Tienan Wang ◽  
Qing Lin

BackgroundMacrophage is an important component in tumor microenvironment (TME) and plays multiple roles in tumor initiation, progression and metastases. In response to various stimuli within TME, macrophage exhibits high level of functional heterogeneity. There are two distinct groups of macrophages: M1 macrophage exhibits pro-inflammatory phenotype with high levels of TNF-a, IL-6, and IL-1ß, while M2 macrophage displays immune suppressive phenotype with high levels of anti-inflammatory cytokines such as IL-10 and TGF-ß. In response to the M2 cytokines, myeloid cells within the TME further acquire higher expression of PD-L1 and thus inactivate T cells. M2 cytokines can also directly inhibit T cell activation. As a result, re-polarizing M2 macrophages becomes a key concept for cancer immunotherapy. The NLRP3 inflammasome is acquired by macrophages to fight against endogenous danger signals. Macrophage NLRP3 activation has been observed in several tumor models, but the function of NLRP3 on macrophage polarity remains controversial. Inflammasome activation with IL-1ß/IL-18 secretion was reported to promote M1 polarization. However, NLRP3 activation was also reported to promote M2 polarity through up-regulation of IL4 in asthma modelMethodsHere, we have established an in vitro human macrophage NLRP3 activation system (figure 1), coupled with M2 macrophage polarization assay, to dissect the role of NLRP3 in macrophage phenotype.ResultsOur results indicate that NLRP3 activation restrained M2 phenotype and further enhanced T cell activation in an M2/T cell co-culture system (figure 2).Abstract 847 Figure 1Inflammasome activation polarize M2 macrophage intUse LPS/ATP to stimulate NLRP3 in M2 macrophage and demonstrate NLRP3 activation could reduce CD163 and increase CD86Abstract 847 Figure 2Inflammasome in M2 rescue T cell activationestablish M2/T co-culture system in vitro to demonstrate M2 could suppress T activation while Inflammatory M2 could partial rescue the suppressive phenotypeConclusionsInflammasome could be the potential target for cancer by modulating T cell activation through macrophage polarization regulation


2021 ◽  
Author(s):  
Huiwen Tian ◽  
Shumei Lin ◽  
Jing Wu ◽  
Ming Ma ◽  
Jian Yu ◽  
...  

Abstract Corneal transplantation rejection remains a major threat to the success rate in high-risk patients. Given the many side effects presented by traditional immunosuppressants, there is an urgency to clarify the mechanism of corneal transplantation rejection and to identify new therapeutic targets. Kaempferol is a natural flavonoid that has been proven in various studies to possess anti-inflammatory, antioxidant, anticancer, and neuroprotective properties. However, the relationship between kaempferol and corneal transplantation remains largely unexplored. To address this, both in vivo and in vitro, we established a model of corneal allograft transplantation in Wistar rats and an LPS-induced inflammatory model in THP-1 derived human macrophages. In the transplantation experiments, we observed an enhancement in the NLRP3 / IL-1 β axis and in M1 macrophage polarization post-operation. In groups to which kaempferol intraperitoneal injections were administered, this response was effectively reduced. However, the effect of kaempferol was reversed after the application of autophagy inhibitors. Similarly, in the inflammatory model, we found that different concentrations of kaempferol can reduce the LPS-induced M1 polarization and NLRP3 inflammasome activation. Moreover, we confirmed that kaempferol induced autophagy and that autophagy inhibitors reversed the effect in macrophages. In conclusion, we found that kaempferol can inhibit the activation of the NLRP3 inflammasomes by inducing autophagy, thus inhibiting macrophage polarization, and ultimately alleviating corneal transplantation rejection. Thus, our study suggests that kaempferol could be used as a potential therapeutic agent in the treatment of allograft rejection.


2020 ◽  
Author(s):  
Jiansen Lu ◽  
Hongbo Zhang ◽  
Jianying Pan ◽  
Zhiqiang Hu ◽  
Liangliang Liu ◽  
...  

Abstract Synovial macrophage polarization and interactions between chondrocytes and macrophages are essential for osteoarthritis (OA) development. The present study determined the role and regulatory mechanisms of fargesin, one of the main components of Magnolia fargesii, in macrophage reprogramming and crosstalk across cartilage and synovium. 10-week-old male C57BL/6 mice were randomly assigned to sham-operated, collagenase-induced OA (CIOA)-operated, or CIOA-operated with intraarticular fargesin treatment groups. Fargesin attenuated articular cartilage degeneration and synovitis, resulting in substantially lower Osteoarthritis Research Society International (OARSI) and synovitis scores. In particular, significantly increased M2 polarization and decreased M1 polarization in synovial macrophages were found in fargesin-treated CIOA mice compared to controls. This was accompanied by down-regulation of IL-6 and IL-1β and upregulation of IL-10 in serum. Although conditioned medium (CM) from the M1 macrophage treated with fargesin reduced the expression of matrix metalloproteinase-13, RUNX2, and type X collagen X in OA cartilage, it had no direct effect on chondrocyte metabolism in an in vitro study. Moreover, fargesin exerted protective effects by suppressing p38/ERK MAPK and p65/NF-κB signaling. This study showed that fargesin switched the polarized phenotypes of macrophages from M1 to M2 subtypes and prevented cartilage degeneration partially by down-regulating p38/ERK MAPK and p65/NF-κB signaling. Targeting macrophage reprogramming or blocking the crosstalk between macrophages and chondrocytes in early OA may be an effective preventive strategy.


2021 ◽  
Author(s):  
Qiuhua Yang ◽  
Jiean Xu ◽  
Qian Ma ◽  
Zhiping Liu ◽  
Yaqi Zhou ◽  
...  

Overnutrition-induced endothelial inflammation plays a crucial role in high fat diet (HFD)-induced insulin resistance in animals. Endothelial glycolysis plays a critical role in endothelial inflammation and proliferation, but its role in diet-induced endothelial inflammation and subsequent insulin resistance has not been elucidated. PFKFB3 is a critical glycolytic regulator, and its increased expression has been observed in adipose vascular endothelium of C57BL/6J mice fed with HFD in vivo, and in palmitate (PA)-treated primary human adipose microvascular endothelial cells (HAMECs) in vitro. We generated mice with Pfkfb3 deficiency selective for endothelial cells to examine the effect of endothelial Pfkfb3 in endothelial inflammation in metabolic organs and in the development of HFD-induced insulin resistance. EC Pfkfb3-deficient mice exhibited mitigated HFD-induced insulin resistance, including decreased body weight and fat mass, improved glucose clearance and insulin sensitivity, and alleviated adiposity and hepatic steatosis. Mechanistically, cultured PFKFB3 knockdown HAMECs showed decreased NF-κB activation induced by PA, and consequent suppressed adhesion molecule expression and monocyte adhesion. Taken together, these results demonstrate that increased endothelial PFKFB3 expression promotes diet-induced inflammatory responses and subsequent insulin resistance, suggesting that endothelial metabolic alteration plays an important role in the development of insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document