scholarly journals Crocetin and Its Glycoside Crocin, Two Bioactive Constituents From Crocus sativus L. (Saffron), Differentially Inhibit Angiogenesis by Inhibiting Endothelial Cytoskeleton Organization and Cell Migration Through VEGFR2/SRC/FAK and VEGFR2/MEK/ERK Signaling Pathways

2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Zhao ◽  
Hio-Tong Kam ◽  
Yan Chen ◽  
Guiyi Gong ◽  
Maggie Pui-Man Hoi ◽  
...  

Crocetin and crocin are two important carotenoids isolated from saffron (Crocus sativus L.), which have been used as natural biomedicines with beneficial effects for improving the suboptimal health status associated with abnormal angiogenesis. However, the anti-angiogenic effects and underlying mechanisms of the effects of crocetin and crocin have not been investigated and compared. The anti-angiogenic effects of crocetin and crocin were tested on human umbilical vein endothelial cells (HUVECs) in vitro, and in zebrafish in vivo. In vivo, crocetin (20 μM) and crocin (50 and 100 μM) significantly inhibited subintestinal vein vessels formation, and a conversion process between them existed in zebrafish, resulting in a difference in their effective concentrations. In the HUVEC model, crocetin (10, 20 and 40 μM) and crocin (100, 200 and 400 μM) inhibited cell migration and tube formation, and inhibited the phosphorylation of VEGFR2 and its downstream pathway molecules. In silico analysis further showed that crocetin had a higher ability to bind with VEGFR2 than crocin. These results suggested that crocetin was more effective than crocin in inhibiting angiogenesis through regulation of the VEGF/VEGFR2 signaling pathway. These compounds, especially crocetin, are potential candidate natural biomedicines for the management of diseases associated with abnormal blood vessel growth, such as age-related macular degeneration.

2021 ◽  
Vol 11 ◽  
Author(s):  
Lu Cheng ◽  
Chong Chen ◽  
Wenke Guo ◽  
Kun Liu ◽  
Qianqian Zhao ◽  
...  

Purpose: Age-related macular degeneration (AMD) is one of the leading causes of blindness, and choroidal neovascularization (CNV) in AMD can lead to serious visual impairment. Gene expression profiling of human ocular tissues have a great potential to reveal the pathophysiology of AMD. This study aimed to identify novel molecular biomarkers and gene expression signatures of AMD.Methods: We analyzed transcriptome profiles in retinal-choroid tissues derived from donor patients with AMD in comparison with those from healthy controls using a publicly available dataset (GSE29801). We focused on the EFEMP1 gene, which was found to be differentially upregulated in AMD, especially in wet AMD eyes. Serological validation analysis was carried out to verify the expression of EFEMP1 in 39 wet AMD patients and 39 age- and gender-matched cataract controls, using an enzyme-linked immunosorbent assay (ELISA). We then investigated the role of EFEMP1 in angiogenesis through in vitro experiments involving EFEMP1 overexpression (OE) and knockdown in human umbilical vein endothelial cells (HUVECs).Results: An increase in EFEMP1 expression was observed in the retinal-choroid tissues of eyes with AMD, which was more significant in wet AMD than in dry AMD. In addition, there was a significant increase in serum fibulin-3 (EFEMP1 encoded protein) concentration in patients with wet AMD compared with that in the controls. Tube formation and proliferation of EFEMP1-OE HUVECs increased significantly, whereas those of EFEMP1 knockdown HUVECs decreased significantly compared with those of the control. Additional extracellular fibulin-3 treatments did not increase tube formation and proliferation of wildtype and EFEMP1 knockdown HUVECs, indicating that the proangiogenic properties of EFEMP1 are of cell origin. We also found that vascular endothelial growth factor expression in HUVECs was upregulated by EFEMP1 overexpression and downregulated by EFEMP1 knockdown.Conclusion: Our findings demonstrate EFEMP1 as a novel biomarker for CNV in AMD, providing a new target for the development of wet AMD-directed pharmaceuticals and diagnostics.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Zhang ◽  
Qingrui Li ◽  
Guozheng Qin ◽  
Yi Zhang ◽  
Chaoying Li ◽  
...  

Abstract Background Polyphyllin VII (PP7), a steroidal saponin from P. polyphylla has been found to exert strong anticancer activity. Little is known about the anti-angiogenesis and anti-metastasis properties of PP7. In this study, the anti-angiogenic and anti-metastatic effects of PP7 on HCC and the molecular mechanisms were evaluated. Methods Effect of PP7 on angiogenesis was assessed by tube formation assay and applied a transgenic Tg(fli1:EGFP) zebrafish model. Effects of PP7 on tumor metastasis and invasion were examined in cell migration and invasion assay, zebrafish tumor xenograft models and lung metastasis mouse models. The protein levels were examined by Western blotting. Results PP7 significantly decreased the tube formation of human umbilical vein endothelial cells, the number and length of ISVs and SIVs of transgenic zebrafish, and the metastasis and invasion of cancer cells in vitro and in vivo. The anti-angiogenic and anti-metastatic effects of PP7 in HepG2 cells were attributable, at least partially, to downregulated NF-κB/MMP-9/VEGF signaling pathway. Conclusion This study demonstrates that PP7 possesses strong anti-angiogenesis and anti-metastasis activities, suggesting that PP7 could be a potential candidate agent for HCC treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donita L. Garland ◽  
Eric A. Pierce ◽  
Rosario Fernandez-Godino

AbstractThe complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration. In this study, we have used double mutant Efemp1R345W/R345W:C5-/- mice to investigate the role of C5 in the formation of sub-RPE deposits in vivo and in vitro. The data revealed that the genetic ablation of C5 does not eliminate the formation of sub-RPE deposits. Contrarily, the absence of C5 in RPE cultures promotes complement dysregulation that results in increased activation of C3, which likely contributes to deposit formation even in the absence of EFEMP1-R345W mutant protein. The results also suggest that genetic ablation of C5 alters the extracellular matrix turnover through an effect on matrix metalloproteinases in RPE cell cultures. These results confirm that C3 rather than C5 could be an effective therapeutic target to treat early AMD.


2015 ◽  
Vol 35 (3) ◽  
pp. 875-884 ◽  
Author(s):  
Hongyuan Song ◽  
Dongyan Pan ◽  
Weifeng Sun ◽  
Cao Gu ◽  
Yuelu Zhang ◽  
...  

Background/Aims: Annexin II receptor (AXIIR) is able to mediate Annexin II signal and induce apoptosis, but its role in angiogenesis remains unclear. This study tries to investigate the role of AXIIR in angiogenesis and the plausible molecular mechanism. Methods/Results: RNA interference technology was used to silence AXIIR, and the subsequent effects in vitro and in vivo were evaluated thereafter. Our data indicated that human umbilical vein endothelial cells (HUVECs) expressed AXIIR and knockdown of AXIIR significantly inhibited HUVECs proliferation, adhesion, migration, and tube formation in vitro and suppressed angiogenesis in vivo. Furthermore, AXIIR siRNA induced cell arrest in the S/G2 phase while had no effect on cell apoptosis. We found that these subsequent effects might be via suppressing the expression of matrix metalloproteinase 2and matrix metalloproteinase 9. Conclusion: AXIIR participates in angiogenesis, and may be a potential therapeutic target for angiogenesis related diseases.


2009 ◽  
Vol 37 (6) ◽  
pp. 1207-1213 ◽  
Author(s):  
Yan Qiu ◽  
Coralie Hoareau-Aveilla ◽  
Sebastian Oltean ◽  
Steven J. Harper ◽  
David O. Bates

Anti-angiogenic VEGF (vascular endothelial growth factor) isoforms, generated from differential splicing of exon 8, are widely expressed in normal human tissues but down-regulated in cancers and other pathologies associated with abnormal angiogenesis (cancer, diabetic retinopathy, retinal vein occlusion, the Denys–Drash syndrome and pre-eclampsia). Administration of recombinant VEGF165b inhibits ocular angiogenesis in mouse models of retinopathy and age-related macular degeneration, and colorectal carcinoma and metastatic melanoma. Splicing factors and their regulatory molecules alter splice site selection, such that cells can switch from the anti-angiogenic VEGFxxxb isoforms to the pro-angiogenic VEGFxxx isoforms, including SRp55 (serine/arginine protein 55), ASF/SF2 (alternative splicing factor/splicing factor 2) and SRPK (serine arginine domain protein kinase), and inhibitors of these molecules can inhibit angiogenesis in the eye, and splice site selection in cancer cells, opening up the possibility of using splicing factor inhibitors as novel anti-angiogenic therapeutics. Endogenous anti-angiogenic VEGFxxxb isoforms are cytoprotective for endothelial, epithelial and neuronal cells in vitro and in vivo, suggesting both an improved safety profile and an explanation for unpredicted anti-VEGF side effects. In summary, C-terminal distal splicing is a key component of VEGF biology, overlooked by the vast majority of publications in the field, and these findings require a radical revision of our understanding of VEGF biology in normal human physiology.


2012 ◽  
Vol 123 (3) ◽  
pp. 147-159 ◽  
Author(s):  
Ting-Hsing Chao ◽  
Shih-Ya Tseng ◽  
Yi-Heng Li ◽  
Ping-Yen Liu ◽  
Chung-Lung Cho ◽  
...  

Cilostazol is an anti-platelet agent with vasodilatory activity that acts by increasing intracellular concentrations of cAMP. Recent reports have suggested that cilostazol may promote angiogenesis. In the present study, we have investigated the effect of cilostazol in promoting angiogenesis and vasculogenesis in a hindlimb ischaemia model and have also examined its potential mechanism of action in vitro and in vivo. We found that cilostazol treatment significantly increased colony formation by human early EPCs (endothelial progenitor cells) through a mechanism involving the activation of cAMP/PKA (protein kinase A), PI3K (phosphoinositide 3-kinase)/Akt/eNOS (endothelial NO synthase) and ERK (extracellular-signal-regulated kinase)/p38 MAPK (mitogen-activated protein kinase) signalling pathways. Cilostazol also enhanced proliferation, chemotaxis, NO production and vascular tube formation in HUVECs (human umbilical vein endothelial cells) through activation of multiple signalling pathways downstream of PI3K/Akt/eNOS. Cilostazol up-regulated VEGF (vascular endothelial growth factor)-A165 expression and secretion of VEGF-A in HUVECs through activation of the PI3K/Akt/eNOS pathway. In a mouse hindlimb ischaemia model, recovery of blood flow ratio (ipsilateral/contralateral) 14 days after surgery was significantly improved in cilostazol-treated mice (10 mg/kg of body weight) compared with vehicle-treated controls (0.63±0.07 and 0.43±0.05 respectively, P<0.05). Circulating CD34+ cells were also increased in cilostazol-treated mice (3614±670 compared with 2151±608 cells/ml, P<0.05). Expression of VEGF and phosphorylation of PI3K/Akt/eNOS and ERK/p38 MAPK in ischaemic muscles were significantly enhanced by cilostazol. Our data suggest that cilostazol produces a vasculo-angiogenic effect by up-regulating a broad signalling network that includes the ERK/p38 MAPK, VEGF-A165, PI3K/Akt/eNOS and cAMP/PKA pathways.


2018 ◽  
Vol 243 (17-18) ◽  
pp. 1256-1264 ◽  
Author(s):  
Xincheng Yao ◽  
Taeyoon Son ◽  
Tae-Hoon Kim ◽  
Yiming Lu

Age-related macular degeneration (AMD) is the leading cause of severe vision loss and legal blindness. It is known that retinal photoreceptors are the primary target of AMD. Therefore, a reliable method for objective assessment of photoreceptor function is needed for early detection and reliable treatment evaluation of AMD and other eye diseases such as retinitis pigmentosa that are known to cause photoreceptor dysfunctions. Stimulus-evoked intrinsic optical signal (IOS) changes promise a unique opportunity for objective assessment of physiological function of retinal photoreceptor and inner neurons. Instead of a comprehensive review, this mini-review is to provide a brief summary of our recent in vitro and in vivo optical coherence tomography (OCT) studies of stimulus-evoked IOS changes in animal retinas. By providing excellent axial resolution to differentiate individual retinal layers, depth-resolved OCT revealed rapid IOS response at the photoreceptor outer segment. The fast photoreceptor-IOS occurred almost right away (∼ 2 ms) after the onset of retinal stimulation, differentiating itself from slow IOS changes correlated with inner neural and hemodynamic changes. Further development of the functional IOS instruments and retinal stimulation protocols may provide a feasible solution to pursue clinical application of functional IOS imaging for objective assessment of human photoreceptors. Impact statement Retinal photoreceptors are the primary target of age-related macular degeneration (AMD) which is the leading cause of severe vision loss and legal blindness. An objective method for functional assessment of photoreceptor physiology can benefit early detection and better treatment evaluation of AMD and other eye diseases that are known to cause photoreceptor dysfunctions. This article summarizes in vitro study of IOS mechanisms and in vivo demonstration of IOS imaging of intact animals. Further development of the functional IOS imaging may provide a revolutionary solution to achieve objective assessment of human photoreceptors.


Biomedicines ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 252
Author(s):  
Jang Mi Han ◽  
Ye Seul Choi ◽  
Dipesh Dhakal ◽  
Jae Kyung Sohng ◽  
Hye Jin Jung

Targeting angiogenesis is an attractive strategy for the treatment of angiogenesis-related diseases, including cancer. We previously identified 23-demethyl 8,13-deoxynargenicin (compound 9) as a novel nargenicin A1 analog with potential anticancer activity. In this study, we investigated the antiangiogenic activity and mode of action of compound 9. This compound was found to effectively inhibit in vitro angiogenic characteristics, including the proliferation, invasion, capillary tube formation, and adhesion of human umbilical vein endothelial cells (HUVECs) stimulated by vascular endothelial growth factor (VEGF). Furthermore, compound 9 suppressed the neovascularization of the chorioallantoic membrane of growing chick embryos in vivo. Notably, the antiangiogenic properties of compound 9 were related to the downregulation of VEGF/VEGFR2-mediated downstream signaling pathways, as well as matrix metalloproteinase (MMP)-2 and MMP-9 expression in HUVECs. In addition, compound 9 was found to decrease the in vitro AGS gastric cancer cell-induced angiogenesis of HUVECs by blocking hypoxia-inducible factor-1α (HIF-1α) and VEGF expression in AGS cells. Collectively, our findings demonstrate for the first time that compound 9 is a promising antiangiogenic agent targeting both VEGF/VEGFR2 signaling in ECs and HIF-1α/VEGF pathway in tumor cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Fawang Zhu ◽  
Shuai Yuan ◽  
Jing Li ◽  
Yun Mou ◽  
Zhiqiang Hu ◽  
...  

Background. Cilengitide is a selective αvβ3 and αvβ5 integrin inhibitor. We sought to investigate the effect of cilengitide on the neovascularization of abdominal aortic plaques in rabbits and explore its underlying antiangiogenic mechanism on human umbilical vein endothelial cells (HUVECs). Materials and Methods. For the in vivo experiment, the abdominal aortic plaque model of rabbits was established and injected with different doses of cilengitide or saline for 14 consecutive days. Conventional ultrasound (CUS) and contrast-enhanced ultrasound (CEUS) were applied to measure the vascular structure and blood flow parameters. CD31 immunofluorescence staining was performed for examining neovascularization. Relative expressions of vascular endothelial growth factor (VEGF) and integrin of the plaque were determined. For in vitro experiments, HUVECs were tested for proliferation, migration, apoptosis, and tube formation in the presence of different doses of cilengitide. Relative expressions of VEGF, integrin, and Ras/ERK/AKT signaling pathways were determined for the exploration of underlying mechanism. Results. CEUS showed modestly increased size and eccentricity index (EI) of plaques in the control group. Different degrees of reduced size and EI of plaques were observed in two cilengitide treatment groups. The expressions of VEGF and integrin in the plaque were inhibited after 14 days of cilengitide treatment. The neovascularization and apoptosis of the abdominal aorta were also significantly alleviated by cilengitide treatment. For in vitro experiments, cilengitide treatment was found to inhibit the proliferation, migration, and tube formation of HUVECs. However, cilengitide did not induce the apoptosis of HUVECs. A higher dose of cilengitide inhibited the mRNA expression of VEGF-A, β3, and β5, but not αV. Lastly, cilengitide treatment significantly inhibited the Ras/ERK/AKT pathway in the HUVECs. Conclusions. This study showed that cilengitide effectively inhibited the growth of plaque size by inhibiting the angiogenesis of the abdominal aortic plaques and blocking the VEGF-mediated angiogenic effect on HUVECs.


Sign in / Sign up

Export Citation Format

Share Document