scholarly journals Experience of a Strategy Including CYP2C19 Preemptive Genotyping Followed by Therapeutic Drug Monitoring of Voriconazole in Patients Undergoing Allogenic Hematopoietic Stem Cell Transplantation

2021 ◽  
Vol 12 ◽  
Author(s):  
Irene García-García ◽  
Irene Dapía ◽  
Jaime Montserrat ◽  
Lucía Martinez de Soto ◽  
David Bueno ◽  
...  

Many factors have been described to contribute to voriconazole (VCZ) interpatient variability in plasma concentrations, especially CYP2C19 genetic variability. In 2014, Hicks et al. presented data describing the correlation between VCZ plasma concentrations and CYP2C19 diplotypes in immunocompromised pediatric patients and utilized pharmacokinetic modeling to extrapolate a more suitable VCZ dose for each CYP2C19 diplotype. In 2017, in our hospital, a clinical protocol was developed for individualization of VCZ in immunocompromised patients based on preemptive genotyping of CYP2C19 and dosing proposed by Hicks et al., Clinical Pharmacogenetics Implementation Consortium (CPIC) clinical guidelines, and routine therapeutic drug monitoring (TDM). We made a retrospective review of a cohort of 28 immunocompromised pediatric patients receiving VCZ according to our protocol. CYP2C19 gene molecular analysis was preemptively performed using PharmArray®. Plasma trough concentrations were measured by immunoassay analysis until target concentrations (1–5.5 μg/ml) were reached. Sixteen patients (57.14%) achieved VCZ trough target concentrations in the first measure after the initial dose based on PGx. This figure is similar to estimations made by Hicks et al. in their simulation (60%). Subdividing by phenotype, our genotyping and TDM-combined strategy allow us to achieve target concentrations during treatment/prophylaxis in 90% of the CYP2C19 Normal Metabolizers (NM)/Intermediate Metabolizers (IM) and 100% of the Rapid Metabolizers (RM) and Ultrarapid Metabolizers (UM) of our cohort. We recommended modifications of the initial dose in 29% (n = 8) of the patients. In RM ≥12 years old, an increase of the initial dose resulted in 50% of these patients achieving target concentrations in the first measure after initial dose adjustment based only on PGx information. Our experience highlights the need to improve VCZ dose predictions in children and the potential of preemptive genotyping and TDM to this aim. We are conducting a multicenter, randomized clinical trial in patients with risk of aspergillosis in order to evaluate the effectiveness and efficiency of VCZ individualization: VORIGENIPHARM (EudraCT: 2019-000376-41).

2013 ◽  
Vol 57 (4) ◽  
pp. 1888-1894 ◽  
Author(s):  
William W. Hope ◽  
Michael VanGuilder ◽  
J. Peter Donnelly ◽  
Nicole M. A. Blijlevens ◽  
Roger J. M. Brüggemann ◽  
...  

ABSTRACTThe efficacy of voriconazole is potentially compromised by considerable pharmacokinetic variability. There are increasing insights into voriconazole concentrations that are safe and effective for treatment of invasive fungal infections. Therapeutic drug monitoring is increasingly advocated. Software to aid in the individualization of dosing would be an extremely useful clinical tool. We developed software to enable the individualization of voriconazole dosing to attain predefined serum concentration targets. The process of individualized voriconazole therapy was based on concepts of Bayesian stochastic adaptive control. Multiple-model dosage design with feedback control was used to calculate dosages that achieved desired concentration targets with maximum precision. The performance of the software program was assessed using the data from 10 recipients of an allogeneic hematopoietic stem cell transplant (HSCT) receiving intravenous (i.v.) voriconazole. The program was able to model the plasma concentrations with a high level of precision, despite the wide range of concentration trajectories and interindividual pharmacokinetic variability. The voriconazole concentrations predicted after the last dosages were largely concordant with those actually measured. Simulations provided an illustration of the way in which the software can be used to adjust dosages of patients falling outside desired concentration targets. This software appears to be an extremely useful tool to further optimize voriconazole therapy and aid in therapeutic drug monitoring. Further prospective studies are now required to define the utility of the controller in daily clinical practice.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1991
Author(s):  
Matylda Resztak ◽  
Joanna Sobiak ◽  
Andrzej Czyrski

The review includes studies dated 2011–2021 presenting the newest information on voriconazole (VCZ), mycophenolic acid (MPA), and vancomycin (VAN) therapeutic drug monitoring (TDM) in children. The need of TDM in pediatric patients has been emphasized by providing the information on the differences in the drugs pharmacokinetics. TDM of VCZ should be mandatory for all pediatric patients with invasive fungal infections (IFIs). Wide inter- and intrapatient variability in VCZ pharmacokinetics cause achieving and maintaining therapeutic concentration during therapy challenging in this population. Demonstrated studies showed, in most cases, VCZ plasma concentrations to be subtherapeutic, despite the updated dosages recommendations. Only repeated TDM can predict drug exposure and individualizing dosing in antifungal therapy in children. In children treated with mycophenolate mofetil (MMF), similarly as in adult patients, the role of TDM for MMF active form, MPA, has not been well established and is undergoing continued debate. Studies on the MPA TDM have been carried out in children after renal transplantation, other organ transplantation such as heart, liver, or intestine, in children after hematopoietic stem cell transplantation or cord blood transplantation, and in children with lupus, nephrotic syndrome, Henoch-Schönlein purpura, and other autoimmune diseases. MPA TDM is based on the area under the concentration–time curve; however, the proposed values differ according to the treatment indication, and other approaches such as pharmacodynamic and pharmacogenetic biomarkers have been proposed. VAN is a bactericidal agent that requires TDM to prevent an acute kidney disease. The particular group of patients is the pediatric one. For this group, the general recommendations of the dosing may not be valid due to the change of the elimination rate and volume of distribution between the subjects. The other factor is the variability among patients that concerns the free fraction of the drug. It may be caused by both the patients’ population and sample preconditioning. Although VCZ, MMF, and VAN have been applied in pediatric patients for many years, there are still few issues to be solve regarding TDM of these drugs to ensure safe and effective treatment. Except for pharmacokinetic approach, pharmacodynamics and pharmacogenetics have been more often proposed for TDM.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1379
Author(s):  
Federica Pigliasco ◽  
Alessia Cafaro ◽  
Raffaele Simeoli ◽  
Sebastiano Barco ◽  
Alberto Magnasco ◽  
...  

The role of therapeutic drug monitoring (TDM) of valaciclovir (VA)/aciclovir (A) and valganciclovir/ganciclovir (VG/G) in critically ill patients is still a matter of debate. More data on the dose–concentration relationship might therefore be useful, especially in pediatrics where clinical practice is not adequately supported by robust PK studies. We developed and validated a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) micro-method to simultaneously quantify A and G from plasma and dried plasma spots (DPS). The method was based on rapid organic extraction from DPS and separation on a reversed-phase C-18 UHPLC column after addition of deuterated internal standards. Accurate analyte quantification using SRM detection was then obtained using a Thermo Fisher Quantiva triple-quadrupole MS coupled to an Ultimate 3000 UHPLC. It was validated following international (EMA) guidelines for bioanalytical method validation and was tested on samples from pediatric patients treated with A, VG, or G for cytomegalovirus infection following solid organ or hematopoietic stem cell transplantation. Concentrations obtained from plasma and DPS were compared using Passing–Bablok and Bland–Altman statistical tests. The assay was linear over wide concentration ranges (0.01–20 mg/L) in both plasma and DPS for A and G, suitable for the expected therapeutic ranges for both Cmin and Cmax, accurate, and reproducible in the absence of matrix effects. The results obtained from plasma and DPS were comparable. Using an LC-MS/MS method allowed us to obtain a very specific, sensitive, and rapid quantification of these antiviral drugs starting from very low volumes (50 μL) of plasma samples and DPS. The stability of analytes for at least 30 days allows for cost-effective shipment and storage at room temperature. Our method is suitable for TDM and could be helpful for improving knowledge on PK/PD targets of antivirals in critically ill pediatric patients.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 263
Author(s):  
Carolina Osorio ◽  
Laura Garzón ◽  
Diego Jaimes ◽  
Edwin Silva ◽  
Rosa-Helena Bustos

Antimicrobial resistance (AR) is a problem that threatens the search for adequate safe and effective antibiotic therapy against multi-resistant bacteria like methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE) and Clostridium difficile, among others. Daptomycin is the treatment of choice for some infections caused by Gram-positive bacteria, indicated most of the time in patients with special clinical conditions where its high pharmacokinetic variability (PK) does not allow adequate plasma concentrations to be reached. The objective of this review is to describe the data available about the type of therapeutic drug monitoring (TDM) method used and described so far in hospitalized patients with daptomycin and to describe its impact on therapeutic success, suppression of bacterial resistance, and control of side effects. The need to create worldwide strategies for the appropriate use of antibiotics is clear, and one of these is the performance of therapeutic drug monitoring (TDM). TDM helps to achieve a dose adjustment and obtain a favorable clinical outcome for patients by measuring plasma concentrations of an administered drug, making a rational interpretation guided by a predefined concentration range, and, thus, adjusting dosages individually.


2021 ◽  
Vol 14 (12) ◽  
pp. 1214
Author(s):  
Catherine Feliu ◽  
Celine Konecki ◽  
Tristan Candau ◽  
Damien Vautier ◽  
Cyril Haudecoeur ◽  
...  

Potential under- or overdose of antibiotics may occur in intensive care units due to high variability in plasma concentrations. The risk is either treatment failure or toxicity. Thus, therapeutic drug monitoring of antibiotics may guide dosing adjustment, maximising antibacterial efficacy and minimising toxicity. The aim of this study was to develop and validate a method for the analysis of 15 antibiotics including beta-lactams, linezolid, fluoroquinolones, daptomycin, and clindamycin to have a complete panel in the management of infections. We proposed to develop a fast, sensitive, and quantitative method for the analysis of 15 antibiotics using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometer (UPLC-MS/MS) technology. this method required only 100 µL of plasma and consisted of a rapid liquid–liquid deproteinisation using methanol. Calibration curves ranged from 0.078 to 500 mg/L depending on the molecules, and were defined according to a therapeutic range. Inter- and intra-assay precisions values were less than 15%. This work described the development and the full validation of a precise, sensitive and accurate assay using UPLC-MS/MS technology. After validation, this new assay was successfully applied to routine therapeutic drug monitoring.


2006 ◽  
Vol 60 (5) ◽  
pp. 636-636
Author(s):  
P G Cáceres ◽  
V Currás ◽  
G Bramuglia ◽  
Ch Höcht ◽  
M Rubio ◽  
...  

2018 ◽  
Vol 62 (9) ◽  
Author(s):  
François Danion ◽  
Vincent Jullien ◽  
Claire Rouzaud ◽  
Manal Abdel Fattah ◽  
Simona Lapusan ◽  
...  

ABSTRACT Voriconazole is the standard treatment for invasive aspergillosis but requires therapeutic drug monitoring to optimize therapy. We report two cases of central nervous system aspergillosis treated with voriconazole. Because of low trough plasma concentrations, we identified gain-of-function mutations in CYP2C19 that were partially responsible for the therapeutic failure of voriconazole. We suggest that systematic voriconazole pharmacogenomic investigation of cerebral aspergillosis be performed to avoid effective therapy delay in this life-threatening disease.


Sign in / Sign up

Export Citation Format

Share Document