scholarly journals Pre- and Early Post-treatment With Arthrospira platensis (Spirulina) Extract Impedes Lipopolysaccharide-triggered Neuroinflammation in Microglia

2021 ◽  
Vol 12 ◽  
Author(s):  
Anna Piovan ◽  
Jessica Battaglia ◽  
Raffaella Filippini ◽  
Vanessa Dalla Costa ◽  
Laura Facci ◽  
...  

Background: Uncontrolled neuroinflammation and microglia activation lead to cellular and tissue damage contributing to neurodegenerative and neurological disorders. Spirulina (Arthrospira platensis (Nordstedt) Gomont, or Spirulina platensis), a blue-green microalga, which belongs to the class of cyanobacteria, has been studied for its numerous health benefits, which include anti-inflammatory properties, among others. Furthermore, in vivo studies have highlighted neuroprotective effects of Spirulina from neuroinflammatory insults in different brain areas. However, the mechanisms underlying the anti-inflammatory effect of the microalga are not completely understood. In this study we examined the effect of pre- and post-treatment with an acetone extract of Spirulina (E1) in an in vitro model of LPS-induced microglia activation.Methods: The effect of E1 on the release of IL-1β and TNF-α, expression of iNOS, nuclear factor erythroid 2–related factor 2 (Nrf2), and heme oxygenase-1 (HO-1), and the activation of NF-κB was investigated in primary microglia by ELISA, real-time PCR, and immunofluorescence.Results: Pre- and early post-treatment with non-cytotoxic concentrations of E1 down-regulated the release of IL-1β and TNF-α, and the over-expression of iNOS induced by LPS. E1 also significantly blocked the LPS-induced nuclear translocation of NF-κB p65 subunit, and upregulated gene and protein levels of Nrf2, as well as gene expression of HO-1.Conclusions: These results indicate that the extract of Spirulina can be useful in the control of microglia activation and neuroinflammatory processes. This evidence can support future in vivo studies to test pre- and post-treatment effects of the acetone extract from Spirulina.

2021 ◽  
Vol 11 (10) ◽  
pp. 4711
Author(s):  
Woo Jin Lee ◽  
Wan Yi Li ◽  
Sang Woo Lee ◽  
Sung Keun Jung

Until now, the physiological effects of Soroseris hirsuta were primarily unknown. Here we have evaluated the anti-inflammatory and antioxidant effects of Soroseris hirsuta extract (SHE) on lipopolysaccharide (LPS)-activated murine macrophages RAW 264.7 cells. SHE inhibited nitric oxide expression and inducible nitric oxide synthase expression in RAW 264.7 cells treated with LPS. Moreover, SHE suppressed LPS-induced phosphorylation of IκB kinase, inhibitor of kappa B, p65, p38, and c-JUN N-terminal kinase. Western blot and immunofluorescence analyses showed that SHE suppressed p65 nuclear translocation induced by LPS. Furthermore, SHE inhibited the reactive oxygen species in LPS-treated RAW 264.7 cells. SHE significantly increased heme oxygenase-1 expression and the nuclear translocation of nuclear factor erythroid 2-related factor 2. SHE suppressed LPS-induced interleukin-1β mRNA expression in RAW 264.7 cells. Thus, SHE is a promising nutraceutical as it displays anti-inflammatory and antioxidant properties.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2032
Author(s):  
Vishnu Raj ◽  
Balaji Venkataraman ◽  
Saeeda Almarzooqi ◽  
Sanjana Chandran ◽  
Shreesh K. Ojha ◽  
...  

Nerolidol (NED) is a naturally occurring sesquiterpene alcohol present in various plants with potent anti-inflammatory effects. In the current study, we investigated NED as a putative anti-inflammatory compound in an experimental model of colonic inflammation. C57BL/6J male black mice (C57BL/6J) were administered 3% dextran sodium sulfate (DSS) in drinking water for 7 days to induce colitis. Six groups received either vehicle alone or DSS alone or DSS with oral NED (50, 100, and 150 mg/kg body weight/day by oral gavage) or DSS with sulfasalazine. Disease activity index (DAI), colonic histology, and biochemical parameters were measured. TNF-α-treated HT-29 cells were used as in vitro model of colonic inflammation to study NED (25 µM and 50 µM). NED significantly decreased the DAI and reduced the inflammation-associated changes in colon length as well as macroscopic and microscopic architecture of the colon. Changes in tissue Myeloperoxidase (MPO) concentrations, neutrophil and macrophage mRNA expression (CXCL2 and CCL2), and proinflammatory cytokine content (IL-1β, IL-6, and TNF-α) both at the protein and mRNA level were significantly reduced by NED. The increase in content of the proinflammatory enzymes, COX-2 and iNOS induced by DSS were also significantly inhibited by NED along with tissue nitrate levels. NED promoted Nrf2 nuclear translocation dose dependently. NED significantly increased antioxidant enzymes activity (Superoxide dismutase (SOD) and Catalase (CAT)), Hemeoxygenase-1 (HO-1), and SOD3 mRNA levels. NED treatment in TNF-α-challenged HT-29 cells significantly decreased proinflammatory chemokines (CXCL1, IL-8, CCL2) and COX-2 mRNA levels. NED supplementation attenuates colon inflammation through its potent antioxidant and anti-inflammatory activity both in in vivo and in vitro models of colonic inflammation.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Dawei Cai ◽  
Thomas W. Huff ◽  
Jun Liu ◽  
Tangbo Yuan ◽  
Zijian Wei ◽  
...  

Sinapic acid (SA) modulates the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in chondrocytes. In order to test the hypothesis that SA is protective against the development of osteoarthritis (OA), primary mouse chondrocytes were treated in vitro with SA and the promoter transactivation activity of heme oxygenase 1 (HO-1), nuclear translocation of Nrf2, and protein expression of HO-1 were assayed. To test the hypothesis in vivo, a destabilization of the medial meniscus (DMM) model was used to induce OA in the knees of mice and SA was delivered orally to the experimental group. The chondrocytes were harvested for further analysis. The expression of HO-1 was similarly upregulated in cartilage from both the experimental mice and human chondrocytes from osteoarthritic knees. SA was found to enhance the promoter transactivation activity of heme oxygenase 1 (HO-1) and increase the expression of Nrf2 and HO-1 in primary chondrocytes. Histopathologic scores showed that the damage induced by the DMM model was significantly lower in the SA treatment group. The addition of a HO-1 inhibitor with SA did not show additional benefit over SA alone in terms of cartilage degradation or histopathologic scores. The expression of TNF-α, IL-1β, IL-6, MMP-1, MMP-3, MMP-13, ADAMTS4, and ADAMTS5 was significantly reduced both in vitro and in vivo by the presence of SA. Protein expressions of HO-1 and Nrf2 were substantially increased in knee cartilage of mice that received oral SA. Our results suggest that SA should be further explored as a preventative treatment for OA.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 167
Author(s):  
Seyed Hossein Shahcheraghi ◽  
Fateme Salemi ◽  
Niloufar Peirovi ◽  
Jamshid Ayatollahi ◽  
Waqas Alam ◽  
...  

Nuclear factor erythroid 2 p45-related factor (2Nrf2) is an essential leucine zipper protein (bZIP) that is primarily located in the cytoplasm under physiological conditions. Nrf2 principally modulates endogenous defense in response to oxidative stress in the brain.In this regard, Nrf2 translocates into the nucleus and heterodimerizes with the tiny Maf or Jun proteins. It then attaches to certain DNA locations in the nucleus, such as electrophile response elements (EpRE) or antioxidant response elements (ARE), to start the transcription of cytoprotective genes. Many neoplasms have been shown to have over activated Nrf2, strongly suggesting that it is responsible for tumors with a poor prognosis. Exactly like curcumin, Zinc–curcumin Zn (II)–curc compound has been shown to induce Nrf2 activation. In the cancer cell lines analyzed, Zinc–curcumin Zn (II)–curc compound can also display anticancer effects via diverse molecular mechanisms, including markedly increasing heme oxygenase-1 (HO-1) p62/SQSTM1 and the Nrf2 protein levels along with its targets. It also strikingly decreases the levels of Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1) protein.As a result, the crosstalk between p62/SQSTM1 and Nrf2 could be used to improve cancer patient response to treatments. The interconnected anti-inflammatory and antioxidative properties of curcumin resulted from its modulatory effects on Nrf2 signaling pathway have been shown to improve insulin resistance. Curcumin exerts its anti-inflammatory impact through suppressing metabolic reactions and proteins such as Keap1 that provoke inflammation and oxidation. A rational amount of curcumin-activated antioxidant Nrf2 HO-1 and Nrf2-Keap1 pathways and upregulated the modifier subunit of glutamate-cysteine ligase involved in the production of the intracellular antioxidant glutathione. Enhanced expression of glutamate-cysteine ligase, a modifier subunit (GLCM), inhibited transcription of glutamate-cysteine ligase, a catalytic subunit (GCLC). A variety of in vivo, in vitro and clinical studies has been done so far to confirm the protective role of curcumin via Nrf2 regulation. This manuscript is designed to provide a comprehensive review on the molecular aspects of curcumin and its derivatives/analogs via regulation of Nrf2 regulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ge Lu ◽  
Qian Wang ◽  
Zi-Jing Xie ◽  
Shang-Jie Liang ◽  
Hong-Xiao Li ◽  
...  

Diminished ovarian reserve (DOR) is an increasingly emerging reproductive disorder that disturbs reproductive-aged women, which is closely linked with inflammation. In clinic, moxibustion has already been applied for reproductive problems. In the present study, we examined the involvement of inflammation in DOR and investigated the effect of moxibustion for its anti-inflammatory activities. Methods. DOR rat model was established using tripterygium glycosides A tablets (TGs) suspension by intragastric administration and was then treated with either moxibustion or hormone replacement therapy (HRT), respectively. Estrus cycles were observed through vaginal cytology. Ovarian morphological alterations were observed by HE staining. The serum levels of follicle-stimulating hormone (FSH), estradiol (E2), anti-Müllerian hormone (AMH), tumor necrosis factor alpha (TNF-α), and interleukin-10 (IL-10) were measured through ELISA. The expression levels of Nrf2, HO-1, and NLRP3 were detected using immunohistochemistry. Nrf2, HO-1, and NLRP3 mRNA were examined by RT-PCR. Results. Moxibustion improved estrus cycles, FSH, E2, and AMH levels relative to DOR rats as well as HRT, while also inhibiting ovarian tissue injury. Anti-inflammatory cytokine IL-10 in peripheral blood was upregulated, and proinflammatory factor TNF-α was decreased after treatment with moxibustion. Moxibustion enhanced the expression of mRNA and protein of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1); in the mean time, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) was suppressed. Conclusions. We demonstrated that moxibustion could ameliorate the ovarian reserve in rats induced by TGs. Overall, the effect of moxibustion was comparable to that of HRT. The underlying mechanism could be attributed to the anti-inflammatory effects of moxibustion, which suppressed NLRP3 activation by upregulating Nrf2/HO-1 signaling pathway.


2020 ◽  
Vol 9 (4) ◽  
pp. 996
Author(s):  
Chih-Hsuan Hsia ◽  
Thanasekaran Jayakumar ◽  
Joen-Rong Sheu ◽  
Chih-Wei Hsia ◽  
Wei-Chieh Huang ◽  
...  

Activated microglia are crucial in the regulation of neuronal homeostasis and neuroinflammation. They also contribute to neuropathological processes after ischemic stroke. Thus, finding new approaches for reducing neuroinflammation has gained considerable attention. The metal ruthenium has gained notable attention because of its ability to form new complexes that can be used in disease treatment. [Ru(η6-cymene)2-(1H-benzoimidazol-2-yl)-quinoline Cl]BF4 (TQ-6), a potent ruthenium (II)-derived compound, was used in this study to investigate its neuroprotective action against microglia activation, middle cerebral artery occlusion (MCAO)-induced embolic stroke, and platelet activation, respectively. TQ-6 (2 μM) potently diminished inflammatory mediators (nitric oxide/inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2)) expression, nuclear factor kappa B (NF-κB) p65 phosphorylation, nuclear translocation, and hydroxyl radical (OH•) formation in LPS-stimulated microglia. Conversely, TQ-6 increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Moreover, it significantly reduced brain infarct volume and edema in MCAO mice. Additionally, it drastically inhibited platelet aggregation and OH• production in mice platelets. This study confirmed that TQ-6 exerts an anti-neuroinflammatory effect on microglia activation through neuroprotection, antiplatelet activation, and free radical scavenging. The authors propose that TQ-6 might mitigate neurodegenerative pathology by inhibiting the NF-κB-mediated downstream pathway (iNOS and COX-2) and enhancing Nrf2/HO-1 signaling molecules in microglia.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Hebron C. Chang ◽  
Hsin-Ling Yang ◽  
Jih-Hao Pan ◽  
Mallikarjuna Korivi ◽  
Jian-You Pan ◽  
...  

Hericium erinaceus(HE) is an edible mushroom that has been shown to exhibit anticancer and anti-inflammatory activities. We investigated the antiangiogenic and antioxidant potentials of ethanol extracts of HE in human endothelial (EA.hy926) cells upon tumor necrosis factor-α- (TNF-α-) stimulation (10 ng/mL). The underlying molecular mechanisms behind the pharmacological efficacies were elucidated. We found that noncytotoxic concentrations of HE (50–200 μg/mL) significantly inhibited TNF-α-induced migration/invasion and capillary-like tube formation of endothelial cells. HE treatment suppressed TNF-α-induced activity and/or overexpression of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). Furthermore, HE downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) followed by suppression of I-κB (inhibitor-κB) degradation. Data from fluorescence microscopy illustrated that increased intracellular ROS production upon TNF-α-stimulation was remarkably inhibited by HE pretreatment in a dose-dependent manner. Notably, HE triggered antioxidant gene expressions of heme oxygenase-1 (HO-1),γ-glutamylcysteine synthetase (γ-GCLC), and glutathione levels, which may contribute to inhibition of ROS. Increased antioxidant status was associated with upregulated nuclear translocation and transcriptional activation of NF-E2related factor-2 (Nrf2) in HE treated cells. Our findings conclude that antiangiogenic and anti-inflammatory activities ofH. erinaceusmay contribute to its anticancer property through modulation of MMP-9/NF-κB and Nrf2-antioxidant signaling pathways.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 622
Author(s):  
Na Yeon Kim ◽  
Sun Hee Cheong ◽  
Kun Jong Lee ◽  
Dai-Eun Sok ◽  
Mee Ree Kim

Ribes diacanthum Pall (RDP) is a Mongolian traditional medicine used to treat renal inflammation. In the present study, we initially investigated the anti-inflammatory effects and mechanisms of action of ethylacetate extract of RDP (EARDP) in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS) and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced dermatitis in mice. We demonstrated that EARDP protected against LPS-induced cell death by inhibiting intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) production, as well as the synthesis of pro-inflammatory mediators and cytokines, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. EARDP inhibited the phosphorylation and degradation of inhibitory κB-α (IκB-α) and the activation of nuclear factor (NF)-κB, indicating that the anti-inflammatory effect of EARDP was mediated via the suppression of NF-κB nuclear translocation. In addition, EARDP induced the heme oxygenase-1 (HO-1) expression and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2), indicating that EARDP induced HO-1 via the Nrf2 pathway in RAW 264.7 cells. Furthermore, EARDP significantly suppressed the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophages. However, ZnPP, a specific inhibitor of HO-1, reversed the EARDP-mediated inhibition of NO and TNF-α production in LPS-stimulated RAW 264.7 macrophages. EARDP blocked the phosphorylation of mitogen-activated protein kinase (MAPK) and Akt in LPS-stimulated RAW 264.7 cells. In the in vivo animal model, EARDP significantly and dose-dependently reduced TPA-induced secretion of TNF-α and IL-6 in mouse ear. Based on these results, EARDP represents a promising natural compound, protective against oxidative stress and inflammatory diseases.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 300
Author(s):  
Moo Rim Kang ◽  
Sun Ah Jo ◽  
Hyunju Lee ◽  
Yeo Dae Yoon ◽  
Joo-Hee Kwon ◽  
...  

Scytonemin is a yellow-green ultraviolet sunscreen pigment present in different genera of aquatic and terrestrial blue-green algae, including marine cyanobacteria. In the present study, the anti-inflammatory activities of scytonemin were evaluated in vitro and in vivo. Topical application of scytonemin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear swelling in BALB/c mice. The expression of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) was also suppressed by scytonemin treatment in the TPA-treated ear of BALB/c mice. In addition, scytonemin inhibited lipopolysaccharide (LPS)-induced production of TNF-α and nitric oxide (NO) in RAW 264.7 cells, a murine macrophage-like cell line, and the mRNA expressions of TNF-α and iNOS were also suppressed by scytonemin in LPS-stimulated RAW 264.7 cells. Further study demonstrated that LPS-induced NF-κB activity was significantly suppressed by scytonemin treatment in RAW 264.7 cells. Our results also showed that the degradation of IκBα and nuclear translocation of the p65 subunit were blocked by scytonemin in LPS-stimulated RAW 264.7 cells. Collectively, these results suggest that scytonemin inhibits skin inflammation by blocking the expression of inflammatory mediators, and the anti-inflammatory effect of scytonemin is mediated, at least in part, by down-regulation of NF-κB activity. Our results also suggest that scytonemin might be used as a multi-function skin care ingredient for UV protection and anti-inflammation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xin Shi ◽  
Shaopin Zhu ◽  
Huiyi Jin ◽  
Junwei Fang ◽  
Xindan Xing ◽  
...  

Purpose: Adiponectin has been shown to exert potent anti-inflammatory activities in a range of systemic inflammatory diseases. This study aimed to investigate the potential therapeutic effects of KS23, a globular adiponectin-derived peptide, on endotoxin-induced uveitis (EIU) in rats and lipopolysaccharide (LPS)-stimulated mouse macrophage-like RAW 264.7 cells.Methods: EIU was induced in Lewis rats by subcutaneous injection of LPS into a single footpad. KS23 or phosphate-buffered saline (PBS) was administered immediately after LPS induction via intravitreal injection. Twenty-four hours later, clinical and histopathological scores were evaluated, and the aqueous humor (AqH) was collected to determine the infiltrating cells, protein concentration, and levels of inflammatory cytokines. In vitro, cultured RAW 264.7 cells were stimulated with LPS in the presence or absence of KS23, inflammatory cytokine levels in the supernatant, nuclear translocation of nuclear factor kappa B (NF-κB) subunit p65, and the expression of NF-kB signaling pathway components were analyzed.Results: KS23 treatment significantly ameliorated the clinical and histopathological scores of EIU rats and reduced the levels of infiltration cells, protein, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the aqueous humor. Consistently, KS23 decreased the expression of TNF-α and IL-6 in the supernatant of LPS-stimulated RAW 264.7 cells and inhibited the LPS-induced nuclear translocation of NF-κB p65 and the phosphorylation of IKKα/β/IκBα/NF-κB.Conclusion: The in vivo and in vitro results demonstrated the anti-inflammatory effects of the peptide KS23 and suggested that KS23 is a compelling, novel therapeutic candidate for the treatment of ocular inflammation.


Sign in / Sign up

Export Citation Format

Share Document