scholarly journals Design, Synthesis and Anti-Lung Cancer Evaluation of 1, 2, 3-Triazole Tethered Dihydroartemisinin-Isatin Hybrids

2021 ◽  
Vol 12 ◽  
Author(s):  
Haodong Hou ◽  
Bin Qu ◽  
Chen Su ◽  
Guihua Hou ◽  
Feng Gao

A series of 1,2,3-triazole tethered dihydroartemisinin-isatin hybrids 8a-c and 9a-k were designed and synthesized. Their antiproliferative activity against A549, doxorubicin-resistant A549 (A549/DOX) as well as cisplatin-resistant A549 (A549/DDP) lung cancer cell lines was also investigated in this study. All hybrids (half maximal inhibitory concentration/IC50: 7.54–73.8 μM) were more potent than the parent drug dihydroartemisinin (IC50: 69.4–88.0 μM) and also non-cytotoxic towards mouse embryonic fibroblast cells NIH/3T3 (IC50: >100 μM). The structure-activity relationships illustrated that the substituents on C-3 and C-5 position of isatin moiety influenced the activity significantly. Imine at C-3 position decreased the activity, whereas fluoro at C-5 position enhanced the activity. In particular, hybrids 8a,c (IC50: 7.54–12.1 μM) and 9i (IC50: 9.10–15.9 μM) were comparable to cisplatin (IC50: 7.54–15.9 μM vs 9.38–19.7 μM) against A549 and A549/DOX, but 4.6–7.6 folds more potent than that of cisplatin (IC50: 8.77–14.3 μM vs 66.9 μM) against A549/DDP cells. Moreover, hybrids 8a,c exhibited excellent stability (liver microsomes: 68–83%) in mouse/human microsomes and good pharmacokinetic properties, demonstrating their potential as a novel anti-lung cancer chemotherapeutic candidates.

2019 ◽  
Vol 15 ◽  
Author(s):  
Xingzhou Li ◽  
Tianhong Zhang ◽  
Wu Zhong

Background: The pharmacokinetic properties of T705 are not optimal for the development of new drugs. Objective: To improve the pharmacokinetic properties of T-705, structure modification of T-705 was conducted using a prodrug strategy. Method: The acidic amide H atom (N4-H) of T705 was attempted to be replaced with acyloxyalkyl groups following the prodrugs development strategy for carboxylic acids, and the resulting compounds were investigated whether could work as prodrugs and contribute to improving the pharmacokinetic properties of the parent compound T705 in vivo. Results: 4-acyloxyalkyl-T705 (4a–e), did act as prodrugs in vivo. 4-iso-butyryloxymethyl-T705 (4a) and 4-acetoxymethyl-T705 (4b) could significantly improve the plasma concentration and systemic exposure for T705, compound 4a displayed non inferior anti-influenza activities, compared with its parent drug T705. Conclusion: Our prodrugs development strategy for T705 is feasible, which may serves as a reference to prodrugs development of similar heterocyclic amides compounds.


2021 ◽  
Vol 11 (9) ◽  
pp. 1760-1768
Author(s):  
Fang Zhang ◽  
Jili Zou ◽  
Dandan Huang

Our study elucidates the effect of folate polyamide amine dendrimer nanoparticles targeting delivery of miRNA-200c inhibitor and CDDP on lung cancer cells proliferation. We established polyamide amine dendrimer nanoparticles binding with CDDP and miRNA-200c inhibitor (Den-PEI-CDDP-siRNA-FA), TEM was employed to detect the morphology of nanoparticles. Agarose gel assay was selected for stabilization test. Cell proliferation were detected by trypanosoma blue exclusion method. The expression of miRNA-200c targeted APKPA12 and apoptosis-related proteins were detected by Western blot and PCR. Finally, apoptosis was analyzed by flow cytometry. Den-PEI-CDDP-siRNA-FA nanoparticles showed excellent stability and drug encapsulation ability. Nanoparticles targeting for FRA to co-deliver siRNA and CDDP could significantly promote cell apoptosis, increase apoptosis-related protein expression, and inhibit cell proliferation. Besides, nanoparticles exerted less venomous effect than untargeted nanoparticles in MRC9 lung fibroblast. Den nanoparticle targeting FRA might be used as the carrier for joint applications with siRNA and CDDP for treating lung cancer.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 996 ◽  
Author(s):  
Gaber El-Saber Batiha ◽  
Amany Magdy Beshbishy ◽  
Azirwan Guswanto ◽  
Arifin Nugraha ◽  
Tserendorj Munkhjargal ◽  
...  

Cinnamomum verum is a commonly used herbal plant that has several documented properties against various diseases. The existing study evaluated the inhibitory effect of acetonic extract of C. verum (AECV) and ethyl acetate extract of C. verum (EAECV) against piroplasm parasites in vitro and in vivo. The drug-exposure viability assay was tested on Madin-Darby bovine kidney (MDBK), mouse embryonic fibroblast (NIH/3T3) and human foreskin fibroblast (HFF) cells. Qualitative phytochemical estimation revealed that AECV and EAECV containing multiple bioactive constituents namely alkaloids, tannins, saponins, terpenoids and remarkable amounts of polyphenols and flavonoids. AECV and EAECV inhibited B. bovis, B. bigemina, B. divergens, B. caballi, and T. equi multiplication at half-maximal inhibitory concentrations (IC50) of 23.1 ± 1.4, 56.6 ± 9.1, 33.4 ± 2.1, 40.3 ± 7.5, 18.8 ± 1.6 µg/mL, and 40.1 ± 8.5, 55.6 ± 1.1, 45.7 ± 1.9, 50.2 ± 6.2, and 61.5 ± 5.2 µg/mL, respectively. In the cytotoxicity assay, AECV and EAECV affected the viability of MDBK, NIH/3T3 and HFF cells with half-maximum effective concentrations (EC50) of 440 ± 10.6, 816 ± 12.7 and 914 ± 12.2 µg/mL and 376 ± 11.2, 610 ± 7.7 and 790 ± 12.4 µg/mL, respectively. The in vivo experiment showed that AECV and EAECV were effective against B. microti in mice at 150 mg/kg. These results showed that C. verum extracts are potential antipiroplasm drugs after further studies in some clinical cases.


Pathogens ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 127 ◽  
Author(s):  
Amany Magdy Beshbishy ◽  
Gaber El-Saber Batiha ◽  
Luay Alkazmi ◽  
Eman Nadwa ◽  
Eman Rashwan ◽  
...  

Atranorin (ATR), is a compound with multidirectional biological activity under different in vitro and in vivo conditions and it is effective as an antibacterial, antiviral, antiprotozoal and anti-inflammatory agent. In the current study, the in vitro as well as in vivo chemotherapeutic effect of ATR as well as its combined efficacy with the existing antibabesial drugs (diminazene aceturate (DA), atovaquone (AV) and clofazimine (CF)) were investigated on six species of piroplasm parasites. ATR suppressed B. bovis, B. bigemina, B. divergens, B. caballi and T. equi multiplication in vitro with IC50 values of 98.4 ± 4.2, 64.5 ± 3.9, 45.2 ± 5.9, 46.6 ± 2.5, and 71.3 ± 2.7 µM, respectively. The CCK test was used to examine ATR’s cytotoxicity and adverse effects on different animal and human cell lines, the main hosts of piroplasm parasites and it showed that ATR affected human foreskin fibroblasts (HFF), mouse embryonic fibroblast (NIH/3T3) and Madin-Darby Bovine Kidney (MDBK) cell viability in a dose-related effect with a moderate selective index. The combined efficacy of ATR with DA, CF, and AV exhibited a synergistic and additive efficacy toward all tested species. In the in vivo experiment, ATR prohibited B. microti multiplication in mice by 68.17%. The ATR-DA and ATR-AV combination chemotherapies were more potent than ATR monotherapy. These results indicate the prospects of ATR as a drug candidate for piroplasmosis treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eun Young Kim ◽  
So Hee Han ◽  
Jong Min Kim ◽  
Seon-Myung Kim ◽  
Song Yub Shin

AbstractSAMP-5 is a short histidine-derived antimicrobial peptidomimetic with pendant dialkylated tail. In this study, we evaluated the potential of SAMP-5 as an antimicrobial agent to combat multidrug-resistant gram-negative bacteria. SAMP-5 showed potent antimicrobial activity (minimum inhibitory concentration 16-64 μg/ml) comparable to melittin against multidrug-resistant Escherichia coli (MDREC) and multidrug-resistant (MDRPA). SAMP-5 displayed no cytotoxicity against three mammalian cells such as mouse macrophage RAW264.7, mouse embryonic fibroblast NIH-3T3, and human bone marrow SH-SY5Y cells at the concentration of 128 μg/ml. SAMP-5 showed resistance to proteolytic degradation with pepsin, trypsin, α-chymotrypsin, and proteinase K. Importantly, unlike ciprofloxacin, no antibiotic resistance against SAMP-5 arose for Pseudomonas aeruginosa during 7 days of serial passage at 0.5 × MIC. Moreover, SAMP-5 showed synergy or additive effects against MDRPA and MDREC, when it combined with chloramphenicol, ciprofloxacin, and oxacillin. Collectively, our results suggested that SAMP-5 is a promising alternative and adjuvant to treat infections caused by multidrug-resistant gram-negative bacteria.


PROTEOMICS ◽  
2006 ◽  
Vol 6 (4) ◽  
pp. 1175-1186 ◽  
Author(s):  
Jung Wook Park ◽  
Seyoon Kim ◽  
Kook Jin Lim ◽  
Richard J. Simpson ◽  
Yu Sam Kim ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jian-Chih Chen ◽  
Jung-Chang Kung ◽  
Chih-Hsin Hsieh ◽  
Mei-Ju Hou ◽  
Chi-Jen Shih ◽  
...  

The main objective of this study is to characterize the thermal, mineralization, and osteoblast cells response of pearl nanocrystallites. The results obtained from X-ray diffraction, FTIR spectra demonstrate that the pearl nano-crystallites can induce the formation of an HA layer on their surface in SBF, even after only short soaking periods. The in vitro cell response to nano-grade pearl powders is assessed by evaluating the cytotoxicity against a mouse embryonic fibroblast cell line and by characterizing the attachment ability and alkaline phosphatase activity of mouse bone cells (MC3T3-E1, abbreviated to E1) and bone marrow stromal precursor (D1) cells. The cytotoxicities of pearls were tested by the filtration and culture of NIH-3T3 mouse embryonic fibroblast cells. The viability of the cultured cells in media containing pearl crystallites for 24 and 72 h is greater than 90%. The bone cells seen in these micrographs are elongated and align predominately along the pearl specimen. The cells observed in these images also appeared well attached and cover the surface almost completely after 1 h. The pearl nanocrystallites had a positive effect on the osteogenic ability of ALP activity, and this promoted the osteogenic differentiation of MSCs significantly at explanations.


Sign in / Sign up

Export Citation Format

Share Document