scholarly journals Coupling Langevin Dynamics With Continuum Mechanics: Exposing the Role of Sarcomere Stretch Activation Mechanisms to Cardiac Function

2018 ◽  
Vol 9 ◽  
Author(s):  
Takumi Washio ◽  
Seiryo Sugiura ◽  
Ryo Kanada ◽  
Jun-Ichi Okada ◽  
Toshiaki Hisada

2021 ◽  
Vol 22 (9) ◽  
pp. 4637
Author(s):  
Daniel Barth ◽  
Andreas Lückhoff ◽  
Frank J. P. Kühn

The human apoptosis channel TRPM2 is stimulated by intracellular ADR-ribose and calcium. Recent studies show pronounced species-specific activation mechanisms. Our aim was to analyse the functional effect of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), commonly referred to as PIP2, on different TRPM2 orthologues. Moreover, we wished to identify the interaction site between TRPM2 and PIP2. We demonstrate a crucial role of PIP2, in the activation of TRPM2 orthologues of man, zebrafish, and sea anemone. Utilizing inside-out patch clamp recordings of HEK-293 cells transfected with TRPM2, differential effects of PIP2 that were dependent on the species variant became apparent. While depletion of PIP2 via polylysine uniformly caused complete inactivation of TRPM2, restoration of channel activity by artificial PIP2 differed widely. Human TRPM2 was the least sensitive species variant, making it the most susceptible one for regulation by changes in intramembranous PIP2 content. Furthermore, mutations of highly conserved positively charged amino acid residues in the membrane interfacial cavity reduced the PIP2 sensitivity in all three TRPM2 orthologues to varying degrees. We conclude that the membrane interfacial cavity acts as a uniform PIP2 binding site of TRPM2, facilitating channel activation in the presence of ADPR and Ca2+ in a species-specific manner.



2021 ◽  
Vol 22 (2) ◽  
pp. 722
Author(s):  
Yukino Ogura ◽  
Kazuko Tajiri ◽  
Nobuyuki Murakoshi ◽  
DongZhu Xu ◽  
Saori Yonebayashi ◽  
...  

Neutrophils are recruited into the heart at an early stage following a myocardial infarction (MI). These secrete several proteases, one of them being neutrophil elastase (NE), which promotes inflammatory responses in several disease models. It has been shown that there is an increase in NE activity in patients with MI; however, the role of NE in MI remains unclear. Therefore, the present study aimed to investigate the role of NE in the pathogenesis of MI in mice. NE expression peaked on day 1 in the infarcted hearts. In addition, NE deficiency improved survival and cardiac function post-MI, limiting fibrosis in the noninfarcted myocardium. Sivelestat, an NE inhibitor, also improved survival and cardiac function post-MI. Flow cytometric analysis showed that the numbers of heart-infiltrating neutrophils and inflammatory macrophages (CD11b+F4/80+CD206low cells) were significantly lower in NE-deficient mice than in wild-type (WT) mice. At the border zone between intact and necrotic areas, the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells was lower in NE-deficient mice than in WT mice. Western blot analyses revealed that the expression levels of insulin receptor substrate 1 and phosphorylation of Akt were significantly upregulated in NE-knockout mouse hearts, indicating that NE deficiency might improve cardiac survival by upregulating insulin/Akt signaling post-MI. Thus, NE may enhance myocardial injury by inducing an excessive inflammatory response and suppressing Akt signaling in cardiomyocytes. Inhibition of NE might serve as a novel therapeutic target in the treatment of MI.



2001 ◽  
Vol 80 (3-4) ◽  
pp. 209-227 ◽  
Author(s):  
M. Onida ◽  
F. Galadini ◽  
F. Forcella

AbstractPaleoseismological techniques have been used to investigate gravitational deformations at the Mortirolo Pass (Valtellina region, central Alps), in order to improve the knowledge on the activation mechanisms and the evolution of deep-seated gravitational slope movements. The deformation has been responsible for mass sliding towards the Valtellina depression through the activation of several-hundred-metre-long shear planes. Minor shear planes dipping towards the mountain played the role of antithetic structures. Four trenches were excavated across scarps representing the surficial expression of shear planes affecting the bedrock and Late Pleistocene-Holocene deposits. The excavations enabled to investigate the stratigraphy of Quaternary deposits and the geometry and kinematics of the shear planes affecting them. Radiocarbon analyses on organic material contained in sediments and paleosols enabled to define a succession of displacement events which occurred during the Late Pleistocene-Holocene. Collected data indicate the persistence of the activity until recent times (last movement related to 1810-1540 cal. BP). A sudden movement has been detected along one of the main shear surfaces (dipping towards the valley) with a vertical displacement of several metres. In contrast, numerous displacements (with lower vertical offset) have been detected along the antithetic shear planes. Different hypotheses have been proposed in the past to define the origin of huge gravitational movements (glacial retreat, uplift of the Alpine chain, fault activity). However, the Late Pleistocene cycles of glacial loading and unloading on the mountain slopes seem to be the most probable factors causing deep-seated gravitational movements in the investigated region. A recent dramatic landslide in an area adjacent to the investigated one (Mt. Zandila-Valpola) testifies to the paroxistic evolution of the large scale gravitational deformations. The densely inhabited Valtellina region is affected by a large number of gravitational structures similar to those of the Mortirolo area. In consideration of the possible effects of the paroxistic activation of these structures, detailed studies on the chronology and kinematics of the deformations through the application of paleoseismological techniques should therefore be encouraged.



2019 ◽  
Vol 6 (2) ◽  
pp. 16 ◽  
Author(s):  
Suneeta Narumanchi ◽  
Karri Kalervo ◽  
Sanni Perttunen ◽  
Hong Wang ◽  
Katariina Immonen ◽  
...  

The let-7c family of micro-RNAs (miRNAs) is expressed during embryonic development and plays an important role in cell differentiation. We have investigated the role of let-7c in heart regeneration after injury in adult zebrafish. let-7c antagomir or scramble injections were given at one day after cryoinjury (1 dpi). Tissue samples were collected at 7 dpi, 14 dpi and 28 dpi and cardiac function was assessed before cryoinjury, 1 dpi, 7 dpi, 14 dpi and 28 dpi. Inhibition of let-7c increased the rate of fibrinolysis, increased the number of proliferating cell nuclear antigen (PCNA) positive cardiomyocytes at 7 dpi and increased the expression of the epicardial marker raldh2 at 7 dpi. Additionally, cardiac function measured with echocardiography recovered slightly more rapidly after inhibition of let-7c. These results reveal a beneficial role of let-7c inhibition in adult zebrafish heart regeneration.



Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Robin C Shoemaker ◽  
Yu Wang ◽  
Sean Thatcher ◽  
Lisa Cassis

Angiotensin-1-7 (Ang-(1-7)) counteracts angiotensin II through effects at Mas receptors (MasR). We demonstrated that sexual dimorphism of obesity-hypertension was associated with dysregulated production of Ang-(1-7). However, the role of MasR in sexual dimorphism of obesity-hypertension has not been examined. MasR deficient mice have also been reported to exhibit deficits in cardiac function. In this study, we hypothesized that deficiency of the MasR would differentially regulate obesity-hypertension in male versus ( vs ) female mice. In addition, we quantified effects of MasR deficiency on cardiac function in obese male mice. Male and female MasR +/+ and -/- mice were fed a low fat (LF, 10%kcal) or high fat (HF, 60% kcal) diet for 16 weeks, and blood pressure was quantified by radiotelemetry. As demonstrated previously, male MasR +/+ mice (24 hr diastolic blood pressure, DBP: LF, 90 ± 3; HF, 96 ± 2 mmHg; P<0.05), but not females (LF, 85 ± 1; HF, 85 ± 2 mmHg), developed hypertension in response to HF feeding. MasR deficiency converted female HF-fed mice to an obesity-hypertension phenotype (DBP: 92 ± 1 mmHg; P<0.05). Surprisingly, male HF-fed MasR -/- mice exhibited reduced DBP compared to HF-fed MasR +/+ males (90 ± 1 vs 96 ± 2 mmHg; P<0.05). To define mechanisms for reductions in DBP of HF-fed male MasR -/- mice, we performed cardiac magnetic resonance (CMR) imaging in both genotypes at 1 month of HF feeding. MasR -/- mice had significantly reduced ejection fraction (EF) compared to MasR +/+ mice at baseline (51.4 ± 2.5 vs 59.3 ± 2.1%; P<0.05) and after one month of HF-feeding (49.8 ± 2.4 vs 52.6 ± 1.9%; P<0.05). Further, CMR imaging demonstrated a thickening of the ventricle wall in MasR -/- mice with 1 month of HF-feeding. MasR +/+ , but not MasR -/- mice, exhibited diet-induced reductions in EF (by 16%; P<0.05) at 1 month of HF feeding, which were reversed by infusion of Ang-(1-7). These results demonstrate that MasR contributes to sexual dimorphism of obesity-hypertension. Ang-(1-7) protects females from obesity-hypertension through the MasR. In contrast, reductions in DBP in obese male mice with MasR deficiency may arise from deficits in cardiac function. These results suggest that MasR agonists may be effective therapies for obesity-associated cardiovascular conditions.



2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Michelle A Hardyman ◽  
Stephen J Fuller ◽  
Daniel N Meijles ◽  
Kerry A Rostron ◽  
Sam J Leonard ◽  
...  

Introduction: Raf kinases lie upstream of ERK1/2 with BRaf being the most highly expressed and having the highest basal activity. V600E BRaf mutations constitutively activate ERK1/2 and are common in cancer. The role of BRaf in the adult heart is yet to be established. ERK1/2 regulate cardiomyocyte gene expression, promoting cardiac hypertrophy and cardioprotection, but effects of ERK1/2 may depend on signal strength. Hypothesis: Our hypotheses are that BRaf is critical in regulating ERK1/2 signaling in cardiomyocytes and, whilst moderate ERK1/2 activity is beneficial, excessive ERK1/2 activity is detrimental to the heart. Methods: We generated heterozygote mice for tamoxifen- (Tam-) inducible cardiomyocyte-specific knockin of V600E in the endogenous BRaf gene. Mice (12 wks) received 2 injections of Tam or vehicle on consecutive days (n=4-10 per group). Kinase activities and mRNA expression were assessed by immunoblotting and qPCR. Echocardiography was performed (Vevo2100). M-mode images (short axis view) were analyzed; data for each mouse were normalized to the mean of 2 baseline controls. Results: V600E knockin did not affect overall BRaf or cRaf levels in mouse hearts, but significantly increased ERK1/2 activities within 48 h (1.51±0.05 fold). Concurrently, mRNAs for hypertrophic gene markers including BNP and immediate early genes (IEGs) increased signficantly. At 72 h, expression of BNP, Fosl1, Myc, Ereg and CTGF increased further, other IEGs (Jun, Fos, Egr1, Atf3) declined, and ANF was upregulated. In contrast, expression of α and β myosin heavy chain mRNAs was substantially downregulated (0.46/0.41±0.05 relative to controls). Within 72 h, left ventricular (LV) mass and diastolic LV wall thickness had increased (1.23±0.05 relative to controls), but cardiac function was severely compromised with significant decreases in ejection fraction and cardiac output (0.53/0.68±0.09 relative to controls) associated with increased LV internal diameters and cardiac volumes. Conclusions: Endogenous cardiomyocyte BRaf is sufficient to activate ERK1/2 in mouse hearts and induce cardiac hypertrophy associated with dynamic temporal changes in gene expression. However, excessive activation of ERK1/2 in isolation is detrimental to cardiac function.



2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
David Y Barefield ◽  
Megan J Puckelwartz ◽  
Lisa Dellefave-Castillo ◽  
Elizabeth M McNally

Background: Cardiomyopathy is a leading cause of heart failure and is highly heritable. One common form of cardiomyopathy is dilated cardiomyopathy (DCM), which currently has over 70 identified genes that have been described as causative for the disease. Genetic testing for DCM employs gene panels and has a sensitivity of mutation detection less than 50%, indicating that additional genes contribute to DCM. Here, we employed whole genome sequencing (WGS) in a family with DCM and heart block who had previously undergone unrevealing genetic testing. We identified a premature stop codon in the MYBPHL gene, a gene that has not previously been linked to DCM as a likely cause of DCM in this family. Myosin binding protein H Like (MyBP-HL) is a muscle-expressed protein bearing structural similarity to myosin binding protein C (MyBP-C), which is commonly mutated gene in cardiomyopathies. Objective: Determine the physiological and pathophysiological role of Mybphl . Results: RNA-seq and qPCR from mouse hearts revealed that Mybphl is highly expressed in the right and left atria with lower expression in the ventricle and virtually no expression in skeletal muscle. As MyBP-HL shares a high homology with the myofilament proteins cardiac myosin binding protein-C and H, we investigated if MyBP-HL is also myofilament-associated. We determined that MyBP-HL protein is myofilament-associated in the atria although not clearly so in ventricle. To assess the requirement of MyBP-HL in cardiac function, we used a mouse model with an insertional disruption of the Mybphl gene. These mice have deficits in in vivo cardiac function, with reduced fractional shortening. In addition, ECG recordings from the Mybphl null mice show conduction system abnormalities affecting atrioventricular conduction. Conclusions: WGS identified a premature stop codon in MYBPHL in human DCM. A mouse model with a disrupted Mybphl gene showed similar pathophysiological features as the humans with reduced ventricular function and cardiac conduction system abnormalities. MyBP-HL is an important protein for normal cardiac function.



Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Monte Willis ◽  
Rongqin Ren ◽  
Cam Patterson

Bone morphogenetic proteins (BMPs) of the TGF-beta superfamily, have been implicated in multiple processes during cardiac development. Our laboratory recently described an unprecedented role for Bmper in antagonizing BMP-2, BMP-4, and BMP-6. To determine the role of Bmper on cardiac development in vivo, we created Bmper null (Bmper −/−) mice by replacing exons 1 and 2 with GFP. Since Bmper −/− mice are perinatally lethal, we determined pre-natal cardiac function of Bmper −/− mice in utero just before birth. By echocardiography, E18.5 Bmper −/− embryos had decreased cardiac function (24.2 +/− 8.1% fractional shortening) compared to Bmper +/− and Bmper +/+ siblings (52.2 +/− 1.6% fractional shortening) (N=4/group). To further characterize the role of Bmper on cardiac function in adult mice, we performed echocardiography on 8-week old male and female Bmper +/− and littermate control Bmper +/+. Bmper +/− mice had an approximately 15% decrease in anterior and posterior wall thickness compared to sibling Bmper +/+ mice at baseline (n=10/group). Cross-sectional areas of Bmper +/− cardiomyocytes were approximately 20% less than wild type controls, indicating cardiomyocyte hypoplasia in adult Bmper +/− mice at baseline. Histologically, no significant differences were identified in representative H&E and trichrome stained adult Bmper +/− and Bmper +/+ cardiac sections at baseline. To determine the effects of Bmper expression on the development of cardiac hypertrophy, both Bmper +/− and Bmper +/+ sibling controls underwent transaortic constriction (TAC), followed by weekly echocardiography. While a deficit was identified in Bmper +/− mice at baseline, both anterior and posterior wall thicknesses increased after TAC, such that identical wall thicknesses were identified in Bmper +/− and Bmper +/+ mice 1–4 weeks after TAC. Notably, cardiac function (fractional shortening %) and histological evaluation revealed no differences between Bmper +/− and Bmper +/+ any time after TAC. These studies identify for the first time that Bmper expression plays a critical role in regulating cardiac muscle mass during development, and that Bmper regulates the development of hypertrophy in response to pressure overload in vivo.



2017 ◽  
Vol 474 (18) ◽  
pp. 3075-3086 ◽  
Author(s):  
Nikhil Panicker ◽  
Valina L. Dawson ◽  
Ted M. Dawson

Monogenetic, familial forms of Parkinson's disease (PD) only account for 5–10% of the total number of PD cases, but analysis of the genes involved therein is invaluable to understanding PD-associated neurodegenerative signaling. One such gene, parkin, encodes a 465 amino acid E3 ubiquitin ligase. Of late, there has been considerable interest in the role of parkin signaling in PD and in identifying its putative substrates, as well as the elucidation of the mechanisms through which parkin itself is activated. Its dysfunction underlies both inherited and idiopathic PD-associated neurodegeneration. Here, we review recent literature that provides a model of activation of parkin in the setting of mitochondrial damage that involves PINK1 (PTEN-induced kinase-1) and phosphoubiquitin. We note that neuronal parkin is primarily a cytosolic protein (with various non-mitochondrial functions), and discuss potential cytosolic parkin activation mechanisms.



Sign in / Sign up

Export Citation Format

Share Document