scholarly journals Time Series Gene Expression Profiling and Temporal Regulatory Pathway Analysis of Angiotensin II Induced Atrial Fibrillation in Mice

2019 ◽  
Vol 10 ◽  
Author(s):  
Yu-Xuan Wu ◽  
Xiao Han ◽  
Chen Chen ◽  
Lei-Xin Zou ◽  
Zhi-Chao Dong ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Nan Liu ◽  
Yunyao Jiang ◽  
Min Xing ◽  
Baixiao Zhao ◽  
Jincai Hou ◽  
...  

Aging is closely connected with death, progressive physiological decline, and increased risk of diseases, such as cancer, arteriosclerosis, heart disease, hypertension, and neurodegenerative diseases. It is reported that moxibustion can treat more than 300 kinds of diseases including aging related problems and can improve immune function and physiological functions. The digital gene expression profiling of aged mice with or without moxibustion treatment was investigated and the mechanisms of moxibustion in aged mice were speculated by gene ontology and pathway analysis in the study. Almost 145 million raw reads were obtained by digital gene expression analysis and about 140 million (96.55%) were clean reads. Five differentially expressed genes with an adjusted P value < 0.05 and |log⁡2(fold  change)| > 1 were identified between the control and moxibustion groups. They were Gm6563, Gm8116, Rps26-ps1, Nat8f4, and Igkv3-12. Gene ontology analysis was carried out by the GOseq R package and functional annotations of the differentially expressed genes related to translation, mRNA export from nucleus, mRNA transport, nuclear body, acetyltransferase activity, and so on. Kyoto Encyclopedia of Genes and Genomes database was used for pathway analysis and ribosome was the most significantly enriched pathway term.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1751-1751
Author(s):  
Animesh Pardanani ◽  
Rebecca R. Laborde ◽  
Terra L Lasho ◽  
Christy Finke ◽  
Alexey A. Leontovich ◽  
...  

Abstract Abstract 1751 Background: JAK inhibitors have significant palliative benefit in myelofibrosis (MF), mainly in the form of improved constitutional symptoms and reduced splenomegaly. Preliminary data suggests that CYT387, a JAK-1/2 inhibitor, also has the ability to produce anemia responses (ASH Annual Meeting, 2011). In general, the mechanism(s) underlying treatment effects of JAK inhibitors remain unclear but likely represent a drug-specific balance between anti-clonal activity and modulation of immuno cellular-cytokine pathways. We conducted a gene expression profiling (GEP) study using primary cells from MF patients undergoing therapy with CYT387 followed by correlation with clinical data. Methods: Study subjects were enrolled in the Phase-1/2 study of CYT387 treatment in patients with primary (PMF), post-polycythemia vera (PPMF) or post-essential thrombocythemia (PTMF) myelofibrosis. Paired research samples were collected; the time points were pre-study and 12 weeks after commencing study treatment. PBMCs were purified from whole blood by Ficoll separation; RNA was isolated from this cell fraction for GEP analysis. Gene expression profiles were generated using Illumnia Human HT-12 v4 microarray. Pair wise analysis was conducted using the Wilcoxon signed-rank test with a p-value cutoff of 0.05 to generate lists of differentially expressed genes between assigned groups. Pathway analysis was conducted to identify relevant pathways enriched for differentially expressed genes. Comprehensive plasma cytokine profiling was performed using Multiplex Bead-Based Luminex technology (Invitrogen, Carlsbad, CA). Results: Seventeen patients were studied based on sample availability; 11 (65%) mere male with median age of 66 years (range 53–85). Twelve (71%) were JAK2V617F mutation positive and the DIPSS-plus risk categorization was 10 (59%) high and 7 (41%) intermediate-2. All patients were evaluable for anemia response; 14 (82%) were red cell transfusion dependent at study start. Nine (53%) patients achieved anemia response by IWG-MRT criteria; of these, 8 patients achieved transfusion independence (minimum non-transfused hemoglobin level of 8 g/dL maintained for at least 12 weeks) and 1 had a sustained >2 g/dL increase in hemoglobin level above baseline. The initial pair wise analysis to identify differential patterns of gene expression compared pre- and post-treatment groups (Figure 1A). This revealed a cluster of significantly (p <0.05) down-regulated genes (minimum 2-fold; median 17-fold) following treatment (displayed in green; upper left quadrant). Pathway enrichment analysis revealed significant associations of these genes with cytokine regulation of immune response, cell proliferation, chemotaxis and cytoskeleton remodeling. We then conducted a pair wise analysis of anemia responders versus non-responders; this revealed a predominance of over expressed gene targets (median 35-fold) in the anemia responder group (Figure 1B) (displayed in red; upper right quadrant). Similar pathway analysis identified enrichment for genes involved in immune system function in this cluster. Conclusions: The current preliminary analysis suggests that genes relevant to immune response-cytokine pathways are significantly over expressed in patients who achieve anemia response following CYT387 therapy. This further suggests a dominant immune component that underpins ineffective hematopoiesis in responding patients. On the basis of broad treatment-related changes in gene expression we suggest that an important component of CYT387's treatment effect is down regulation of these dysregulated pathways. Ongoing studies include validation of select gene targets which will be tested prospectively in future treatment protocols, as well as correlation of gene expression with circulating cytokine-chemokine levels. Disclosures: Pardanani: Bristol-Myers Squibb: Clinical trial support, Clinical trial support Other; YM BioSciences: Clinical trial support, Clinical trial support Other; Sanofi-Aventis: Clinical trial support Other. Off Label Use: Data from Phase −1/2 study of CYT387 use in myelofibrosis is mentioned.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3068-3068
Author(s):  
Lindsay Nicholson ◽  
Emily Mavin ◽  
Lynne Minto ◽  
Julie Irving ◽  
Anne Dickinson ◽  
...  

Abstract Dendritic cells (DC) play a key role in the pathogenesis of Graft versus Host Disease (GvHD), a complication of haematopoietic stem cell transplantation and offer an attractive target for therapy. Regulatory T cells (Treg) have a potent immunoregulatory effect on the maturation and the antigen-presenting cell (APC) function of DC and adoptive transfer of Treg is highly efficacious in the induction of tolerance in an experimental model of GvHD and has entered Phase I clinical trials. Several mechanisms of suppression have been proposed, including Treg acting directly on DCs, attenuating their antigen-presenting and co-stimulatory functions by arresting their maturation. However, the molecular basis underpinning these effects in DCs remains ill-defined. We investigated the effect of Treg treatment on DCs by conducting gene expression profiling and confirmed the functional consequences using downstream assays. Immature, mature and Treg-treated DCs were generated from immuno-magnetic isolated monocytes (im-DC, mat-DC and Treg-DC, respectively) and moDC populations were generated using a well-established 6 day culture with GM-CSF and IL-4, followed by 24 hour LPS maturation. Treg were added on day 3 of culture at a 3:1 ratio. All cell populations were harvested on day 7 and sorted via FSC/SSC/CD3neg gating to remove Treg present in the co-culture and control for any changes in gene expression caused by shear stress. Gene expression profiling was carried out using the Illumina HumanHT12 microarray platform. Data was processed using R/Bioconductor workflows and the functional significance of differentially expressed genes was evaluated using Ingenuity Pathway Analysis software. Mat-DC and Treg-DC expression profiles were compared relative to the im-DC for data analysis. Upon LPS treatment, the levels of 1834 unique genes were differentially regulated in mat-DC by at least twofold (862 genes upregulated/972 downregulated) compared to the im-DC counterparts. In the Treg-DC, 1326 unique genes were differentially modulated (633 genes upregulated/693 genes downregulated). Microarray analysis of the CD markers identified a higher expression of the previously identified surface markers CD80, CD83 and CD86 in the mat-DC compared to the Treg-treated counterpart (validated by flow cytometry), confirming the semi-mature phenotype. Novel findings from the dataset include the reduction of the endocytotic-related genes, CD206 and CD209, in the Treg-DCs compared to the im-DC and this reduction manifested functionally in an impaired antigen uptake, as assessed by FITC-Dextran. Additionally, the surface marker, CD38, was downregulated in the Treg-DC compared to the mat-DC, confirmed by flow cytometry. CD38 has been shown to be NFκB-dependent and a marker of maturation in monocyte-derived DCs, further supporting the semi-mature phenotype. Furthermore, CD38 is functionally involved in CD83 expression and IL-12 induction. We assessed IL-12 cytokine secretion by Treg-treated DCs and showed a significantly reduced level of induction compared to mat-DC (p=0.0079). Pathway analysis revealed NFκB-related genes to be downregulated in the Treg-DC compared to the mat-DC. These differentially expressed genes included the TLR-adaptor protein, MYD88, the NFκB subunit, RELB and an inhibitor of NFκB, NFκB1A. This finding, coupled to the importance of NFκB signalling pathway in DC function, prompted us to investigate it at the functional level by measuring levels of phosphorylation of serine 536 of the RelA subunit as a marker of activity in response to LPS stimulation. DC cultured in the absence of Tregs (mat-DC) showed significantly higher levels of Ser536 phosphorylation when compared to those unstimulated cells (im-DC) (p= 0.0018). Concordant with the gene expression data, Treg-treated DCs (Treg-DC), showed a significantly attenuated NFκB activation when compared to their LPS-stimulated DCs counterparts (p = 0.0191), however, signalling was not completely abolished compared to those unstimulated DCs (p= 0.0003). In conclusion, gene expression profiles of Treg-treated DCs are significantly different to their mat-DC and im-DC counterparts. Here, we present the novel finding that Tregs modulate DC function, in part, by attenuation of the NFkB signalling pathway, arresting the DCs at a semi-mature phenotype, as evidenced by expression arrays and functional assays. Disclosures No relevant conflicts of interest to declare.


Hypertension ◽  
2005 ◽  
Vol 45 (4) ◽  
pp. 692-697 ◽  
Author(s):  
Beverly L. Falcón ◽  
Shereeni J. Veerasingham ◽  
Colin Sumners ◽  
Mohan K. Raizada

Sign in / Sign up

Export Citation Format

Share Document