scholarly journals FOSL2 Is Involved in the Regulation of Glycogen Content in Chicken Breast Muscle Tissue

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojing Liu ◽  
Lu Liu ◽  
Jie Wang ◽  
Huanxian Cui ◽  
Guiping Zhao ◽  
...  

The glycogen content in muscle of livestock and poultry animals affects the homeostasis of their body, growth performance, and meat quality after slaughter. FOS-like 2, AP-1 transcription factor subunit (FOSL2) was identified as a candidate gene related to muscle glycogen (MG) content in chicken in our previous study, but the role of FOSL2 in the regulation of MG content remains to be elucidated. Differential gene expression analysis and weighted gene coexpression network analysis (WGCNA) were performed on differentially expressed genes (DEGs) in breast muscle tissues from the high-MG-content (HMG) group and low-MG-content (LMG) group of Jingxing yellow chickens. Analysis of the 1,171 DEGs (LMG vs. HMG) identified, besides FOSL2, some additional genes related to MG metabolism pathway, namely PRKAG3, CEBPB, FOXO1, AMPK, and PIK3CB. Additionally, WGCNA revealed that FOSL2, CEBPB, MAP3K14, SLC2A14, PPP2CA, SLC38A2, PPP2R5E, and other genes related to the classical glycogen metabolism in the same coexpressed module are associated with MG content. Also, besides finding that FOSL2 expression is negatively correlated with MG content, a possible interaction between FOSL2 and CEBPB was predicted using the STRING (Search Tool for the Retrieval of Interacting Genes) database. Furthermore, we investigated the effects of lentiviral overexpression of FOSL2 on the regulation of the glycogen content in vitro, and the result indicated that FOSL2 decreases the glycogen content in DF1 cells. Collectively, our results confirm that FOSL2 has a key role in the regulation of the MG content in chicken. This finding is helpful to understand the mechanism of MG metabolism regulation in chicken and provides a new perspective for the production of high-quality broiler and the development of a comprehensive nutritional control strategy.

1963 ◽  
Vol 44 (1) ◽  
pp. 90-100
Author(s):  
P. R. Bouman ◽  
W. Dermer

ABSTRACT The in vitro effects of adrenaline on glycogen metabolism and glucose uptake were studied in diaphragms of intact, adrenalectomized and adrenodemedullated rats decapitated under »Nembutal« anaesthesia. Adrenalectomy and pretreatment of adrenalectomized rats with cortisol caused an increase in the net loss of glycogen induced by adrenaline. When glycogen deposition in the absence of adrenaline was also taken into account, the overall magnitude of the glycogenolytic response appeared to be unchanged. The apparent qualitative change in response induced by these procedures was attributed to increased initial glycogen values. In diaphragms of adrenalectomized and adrenodemedullated rats the response to adrenaline was identical, the initial glycogen content being the same in these preparations. None of the experimental procedures affected the variable inhibition of glucose uptake by adrenaline. These results do not favour the existence of a »permissive« or synergistic action of adrenocortical steroids with regard to the effects of adrenaline on peripheral carbohydrate metabolism.


1960 ◽  
Vol XXXV (IV) ◽  
pp. 541-550 ◽  
Author(s):  
P. R. Bouman ◽  
W. Dermer

ABSTRACT Hemidiaphragms of intact and adrenalectomized rats which had been killed by decapitation, were incubated for 1 hour at 37° C under aerobic conditions. Glucose uptake and glycogen deposition were determined. Addition of adrenaline in vitro (1 μg/ml) caused a substantial decrease in glucose uptake in both types of diaphragms, this decrease being equivalent to a simultaneous inhibition of glycogen deposition. »Nembutal« anaesthesia prior to decapitation was found to alter the response to adrenaline. This change was most clearly observed in diaphragms of adrenalectomized rats. Here, adrenaline mainly affected glycogen metabolism by way of glycogen degradation, whereas the overall magnitude of the response was not materially changed. However, glucose uptake appeared to be only slightly decreased by adrenaline under these conditions. The change in response to adrenaline was attributed to the higher initial glycogen content observed in diaphragms of nembutalized rats. It was suggested that prevention of an acute release of endogenous adrenergic substances, occurring after decapitation of unanaesthetized donor rats, may be the actual cause of this phenomenon. Attention was drawn to the significance of the initial glycogen content as an important factor in carbohydrate metabolism of the isolated rat diaphragm.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Aditya S. Gokhale ◽  
Raymond R. Mahoney

The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (anin vitroindicator of bioavailable iron) from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sautéing, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For uncooked samples, dialyzable iron was significantly enhanced after both extraction and digestion. All cooking methods led to markedly reduced levels of dialyzable iron both by extraction and digestion. In most cooked, digested samples dialyzable iron was no greater than the iron-only (no sample) control. Cooked samples showed lower levels of histidine and sulfhydryls but protein digestibility was not reduced, except for the sautéed sample. The results showed that, after cooking, little if any dialyzable iron results from digestion of muscle proteins. Our research indicates that, in cooked chicken, residual acid-extractable components are the most important source of dialyzable iron.


2018 ◽  
Author(s):  
Shi-Lu Chen ◽  
Chris Zhiyi Zhang ◽  
Li-Li Liu ◽  
Shi-Xun Lu ◽  
Ying-Hua Pan ◽  
...  

AbstractHepatocarcinogenesis is attributed to the reprogramming of cellular metabolism as consequence of the alteration in metabolite-related gene regulation. Identifying the mechanism of aberrant metabolism is of great potential to provide novel targets for the treatment of hepatocellular carcinoma (HCC). Here, we demonstrated that glycogen synthase 2 (GYS2) restricted tumor growth in HBV-related HCC via a negative feedback loop with p53. Expression of GYS2 was significantly downregulated in HCC and correlated with decreased glycogen content and unfavorable patient outcomes. GYS2 overexpression suppressed, whereas GYS2 knockdown facilitated cell proliferation in vitro and tumor growth in vivo via modulating p53 expression. GYS2 competitively bound to MDM2 to prevent p53 from MDM2-mediated ubiquitination and degradation. Furthermore, GYS2 enhanced the p300-induced acetylation of p53 at K373/382, which in turn inhibited the transcription of GYS2 in the support of HBx/HDAC1 complex. In summary, our findings suggest that GYS2 serves as a prognostic factor and functions as a tumor suppressor in HCC. The newly identified HBx/GYS2/p53 axis is responsible for the deregulation of glycogen metabolism and represents a promising therapeutic target for the clinical management of HCC.SynopsisThis study elucidate the role of GYS2 in glycogen metabolism and the progression of HCC. The newly identified HBx/GYS2/p53 axis is responsible for the deregulation of glycogen metabolism and represents a promising therapeutic target for the clinical management of HCC.Decrease of GYS2 was significantly correlated with decreased glycogen content and unfavorable patient outcomes in a large cohort containing 768 patients with HCC.GYS2 overexpression suppressed, whereas GYS2 knockdown facilitated cell proliferation in vitro and tumor growth in vivo via modulating p53 signaling pathway.GYS2 competitively bound to MDM2 to prevent p53 from MDM2-mediated ubiquitination and degradation.GYS2 enhanced the p300-induced acetylation of p53 at Lys373/382, which in turn inhibited the transcription of GYS2 in the support of HBx/HDAC1 complex.


Parasitology ◽  
1989 ◽  
Vol 98 (1) ◽  
pp. 67-73 ◽  
Author(s):  
A. G. M. Tielens ◽  
C. Celik ◽  
J. M. Van Den Heuvel ◽  
R. H. Elfring ◽  
S. G. Van Den Bergh

SummaryThe glycogen stores of adult Schistosoma mansoni worms could be labelled by incubation of the worms, after an initial reduction of their glycogen content, in the presence of [6-14C]glucose. Subsequent breakdown of the labelled glycogen by the parasite revealed that glycogen was degraded to lactate and carbon dioxide. The degradation of glycogen, as compared to that of glucose, resulted in slightly different ratios of these two end-products. This indicates that glycogen breakdown did not replace glucose breakdown to the same extent in all cells and that Krebs-cycle activity was not uniformly distributed throughout the cells of this parasite. Both fructose and mannose could replace glucose as an energy source and the rate of glycogen synthesis from either of these two carbohydrates was higher than from glucose. No indications for glyconeogenesis from C3-units were found. Glycogen metabolism of S. mansoni was not influenced by hormones of the mammalian host. It is regulated by the external glucose concentration and by the level of the endogenous glycogen stores. Studies on paired and unpaired worms showed that no interaction between male and female was necessary for the synthesis of glycogen by female worms.


1967 ◽  
Vol 54 (4) ◽  
pp. 645-662 ◽  
Author(s):  
Å. Hjalmarson ◽  
K. Ahrén

ABSTRACT The effect of growth hormone (GH) in vitro on the rate of intracellular accumulation of the non-utilizable amino acid α-aminoisobutyric acid (AIB) was studied in the intact rat diaphragm preparation. Bovine or ovine GH (25 μg/ml incubation medium) markedly stimulated the accumulation of AIB-14C by diaphragms from hypophysectomized rats, while there was no or only a very slight effect on diaphragms from normal rats. In diaphragms from rats with the pituitary gland autotransplanted to the kidney capsule GH in vitro stimulated the accumulation of AIB-14C significantly more than in diaphragms from normal rats but significantly less than in diaphragms from hypophysectomized rats. Injections of GH intramuscularly for 4 days to hypophysectomized rats made the diaphragms from these rats less sensitive or completely insensitive to GH in vitro. These results indicate strongly that the relative insensitivity to GH in vitro of diaphragms from normal rats is due to the fact that the muscle tissues from these rats has been exposed to the endogenously secreted GH. The results show that GH can influence the accumulation of AIB-14C in the isolated rat diaphragm in two different ways giving an acute or »stimulatory« effect and a late or »inhibitory« effect, and that it seems to be a time-relationship between these two effects of the hormone.


1966 ◽  
Vol 51 (2) ◽  
pp. 193-202
Author(s):  
J. A. Antonioli ◽  
A. Vannotti

ABSTRACT 1. The metabolism of suspensions of circulating leucocytes has been studied after intramuscular injection of a dose of 50 mg/kg of a corticosteroid (cortisone acetate). The suspensions were incubated under aerobic conditions in the presence of a glucose concentration of 5.6 mm. Glucose consumption, lactate production, and variations in intracellular glycogen concentration were measured. After the administration of the corticosteroid, the anabolic processes of granulocyte metabolism were reversibly stimulated. Glucose consumption and lactate production increased 12 hours after the injection, but tended to normalize after 24 hours. The glycogen content of the granulocytes was enhanced, and glycogen synthesis during the course of the incubation was greatly stimulated. The action of the administered corticosteroid is more prolonged in females than in males. The injection of the corticosteroid caused metabolic modifications which resemble in their modulations and in their chronological development those found in circulating granulocytes of guinea-pigs suffering from sterile peritonitis. These results suggest, therefore, that, in the case of acute inflammation, the glucocorticosteroids may play an important role in the regulation of the metabolism of the blood leucocytes.


2021 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Divya Gupta ◽  
Jeffrey W. Santoso ◽  
Megan L. McCain

Engineered in vitro models of skeletal muscle are essential for efficiently screening drug safety and efficacy. However, conventional culture substrates poorly replicate physical features of native muscle and do not support long-term culture, which limits tissue maturity. Micromolded gelatin hydrogels cross-linked with microbial transglutaminase (gelatin-MTG hydrogels) have previously been shown to induce C21C2 myotube alignment and improve culture longevity. However, several properties of gelatin-MTG hydrogels have not been systematically characterized, such as changes in elastic modulus during incubation in culture-like conditions and their ability to support sarcomere maturation. In this study, various gelatin-MTG hydrogels were fabricated and incubated in ambient or culture-like conditions. Elastic modulus, mass, and transmittance were measured over a one- or two-week period. Compared to hydrogels in phosphate buffered saline (PBS) or ambient air, hydrogels in Dulbecco’s Modified Eagle Medium (DMEM) and 5% CO2 demonstrated the most stable elastic modulus. A subset of gelatin-MTG hydrogels was micromolded and seeded with C2C12 or primary chick myoblasts, which aligned and fused into multinucleated myotubes with relatively mature sarcomeres. These data are important for fabricating gelatin-MTG hydrogels with predictable and stable mechanical properties and highlight their advantages as culture substrates for engineering relatively mature and stable muscle tissues.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 629
Author(s):  
Walaa A. Husseiny ◽  
Abeer A. I. Hassanin ◽  
Adel A. S. El Nabtiti ◽  
Karim Khalil ◽  
Ahmed Elaswad

The present study was conducted to investigate the effects of colloidal nanoparticles of silver (Nano-Ag) on the expression of myogenesis-related genes in chicken embryos. The investigated genes included the members of the myogenic regulatory factors family (MRFs) and myocyte enhancer factor 2A (MEF2A) genes. A total of 200 fertilized broiler eggs (Indian River) were randomly distributed into four groups; non-injected control, injected control with placebo, treatment I in ovo injected with 20 ppm Nano-Ag, and treatment II in ovo injected with 40 ppm Nano-Ag. The eggs were then incubated for 21 days at the optimum temperature and humidity conditions. Breast muscle tissues were collected at the 5th, 8th, and 18th days of the incubation period. The mRNA expression of myogenic determination factor 1 (MYOD1), myogenic factor 5 (MYF5), myogenic factor 6 (MYF6), myogenin (MYOG), and MEF2A was measured at the three sampling points using real-time quantitative PCR, while MYOD1 protein expression was evaluated on day 18 using western blot. Breast muscle tissues were histologically examined on day 18 to detect the changes at the cellular level. Our results indicate that myogenesis was enhanced with the low concentration (20 ppm) of Nano-Ag due to the higher expression of MYOD1, MYF5, and MYF6 at the transcriptional level and MYOD1 at the translational level. Moreover, histological analysis revealed the presence of hyperplasia (31.4% more muscle fibers) in treatment I (injected with 20 ppm). Our findings indicate that in ovo injection of 20 ppm Nano-Ag enhances the development of muscles in chicken embryos compared with the 40-ppm dosage and provide crucial information for the use of silver nanoparticles in poultry production.


Sign in / Sign up

Export Citation Format

Share Document