scholarly journals Molecular and Biomechanical Adaptations to Mechanical Stretch in Cultured Myotubes

2021 ◽  
Vol 12 ◽  
Author(s):  
Dapeng Ren ◽  
Jing Song ◽  
Ran Liu ◽  
Xuemin Zeng ◽  
Xiao Yan ◽  
...  

Myotubes are mature muscle cells that form the basic structural element of skeletal muscle. When stretching skeletal muscles, myotubes are subjected to passive tension as well. This lead to alterations in myotube cytophysiology, which could be related with muscular biomechanics. During the past decades, much progresses have been made in exploring biomechanical properties of myotubes in vitro. In this review, we integrated the studies focusing on cultured myotubes being mechanically stretched, and classified these studies into several categories: amino acid and glucose uptake, protein turnover, myotube hypertrophy and atrophy, maturation, alignment, secretion of cytokines, cytoskeleton adaption, myotube damage, ion channel activation, and oxidative stress in myotubes. These biomechanical adaptions do not occur independently, but interconnect with each other as part of the systematic mechanoresponse of myotubes. The purpose of this review is to broaden our comprehensions of stretch-induced muscular alterations in cellular and molecular scales, and to point out future challenges and directions in investigating myotube biomechanical manifestations.

1995 ◽  
Vol 347 (1319) ◽  
pp. 21-25 ◽  

Over the past three or four years, great strides have been made in our understanding of the proteins involved in recombination and the mechanisms by which recombinant molecules are formed. This review summarizes our current understanding of the process by focusing on recent studies of proteins involved in the later steps of recombination in bacteria. In particular, biochemical investigation of the in vitro properties of the E. coli RuvA, RuvB and RuvC proteins have provided our first insight into the novel molecular mechanisms by which Holliday junctions are moved along DNA and then resolved by endonucleolytic cleavage.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 376 ◽  
Author(s):  
David B Warheit

Nanotechnology is an emerging, cross-disciplinary technology designed to create and synthesize new materials at the nanoscale (generally defined as a particle size range of ≤10-9 meters) to generate innovative or altered material properties. The particle properties can be modified to promote different and more flexible applications, resulting in consumer benefits, particularly in medical, cosmetic, and industrial applications. As this applied science matures and flourishes, concerns have arisen regarding potential health effects of exposures to untested materials, as many newly developed products have not been adequately evaluated. Indeed, it is necessary to ensure that societal and commercial advantages are not outweighed by potential human health or environmental disadvantages. Therefore, a variety of international planning activities or research efforts have been proposed or implemented, particularly in the European Union and United States, with the expectation that significant advances will be made in understanding potential hazards related to exposures in the occupational and/or consumer environments. One of the first conclusions reached regarding hazardous effects of nanoparticles stemmed from the findings of early pulmonary toxicology studies, suggesting that lung exposures to ultrafine particles were more toxic than those to larger, fine-sized particles of similar chemistry. This review documents some of the conceptual planning efforts, implementation strategies/activities, and research accomplishments over the past 10 years or so. It also highlights (in this author’s opinion) some shortcomings in the research efforts and accomplishments over the same duration. In general, much progress has been made in developing and implementing environmental, health, and safety research-based protocols for addressing nanosafety issues. However, challenges remain in adequately investigating health effects given 1) many different nanomaterial types, 2) various potential routes of exposure, 3) nanomaterial characterization issues, 4) limitations in research methodologies, such as time-course and dose-response issues, and 5) inadequate in vitro methodologies for in vivo standardized, guideline toxicity testing.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3813 ◽  
Author(s):  
Hélder Oliveira ◽  
Ana Fernandes ◽  
Natércia F. Brás ◽  
Nuno Mateus ◽  
Victor de Freitas ◽  
...  

Many efforts have been made in the past two decades into the search for novel natural and less-toxic anti-diabetic agents. Some clinical trials have assigned this ability to anthocyanins, although different factors like the food source, the amount ingested, the matrix effect and the time of consumption (before or after a meal) seem to result in contradictory conclusions. The possible mechanisms involved in these preventive or therapeutic effects will be discussed—giving emphasis to the latest in vitro and in silico approaches. Therapeutic strategies to counteract metabolic alterations related to hyperglycemia and Type 2 Diabetes Mellitus (T2DM) may include: (a) Inhibition of carbohydrate-metabolizing enzymes; (b) reduction of glucose transporters expression or activity; (c) inhibition of glycogenolysis and (d) modulation of gut microbiota by anthocyanin breakdown products. These strategies may be achieved through administration of individual anthocyanins or by functional foods containing complexes of anthocyanin:carbohydrate:protein.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1182
Author(s):  
Andra-Sabina Neculai-Valeanu ◽  
Adina Mirela Ariton

The utilization of sex-sorted sperm for artificial insemination and in-vitro fertilization is considered a valuable tool for improving production efficiency and optimizing reproductive management in farm animals, subsequently ensuring sufficient food resource for the growing human population. Despite the fact that sperm sex-sorting is one of the most intense studied technologies and notable progress have been made in the past three decades to optimize it, the conception rates when using sex-sorted semen are still under expectations. Assisted reproduction programs may benefit from the use of emergent nano and microfluidic-based technologies. This article addresses the currently used methods for sperm sex-sorting, as well as the emerging ones, based on nanotechnology and microfluidics emphasizing on their practical and economic applicability.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 528 ◽  
Author(s):  
Aleksandra Radanović ◽  
Dragana Miladinović ◽  
Sandra Cvejić ◽  
Milan Jocković ◽  
Siniša Jocić

Domestication and the first steps of sunflower breeding date back more than 4000 years. As an interesting crop to humans, sunflower underwent significant changes in the past to finally find its place as one of the most significant oil crops today. Substantial progress has already been made in understanding how sunflower was domesticated. Recent advances in molecular techniques with improved experimental designs contributed to further understanding of the genetic and molecular basis underlying the architectural and phenotypic changes that occurred during domestication and improvements in sunflower breeding. Understanding the domestication process and assessing the current situation concerning available genotypic variations are essential in order for breeders to face future challenges. A review of the tools that are used for exploring the genetic and genome changes associated with sunflower domestication is given in the paper, along with a discussion of their possible implications on classical sunflower breeding techniques and goals.


Nanomedicine ◽  
2019 ◽  
Vol 14 (20) ◽  
pp. 2749-2762 ◽  
Author(s):  
Amber Nagy ◽  
Nicholas L Robbins

Nanomedicine has matured significantly in the past 20 years and a number of nanoformulated therapies are cleared by regulatory agencies for use across the globe. Transplant medicine is one area that has significantly benefited from the advancement of nanomedicine in recent times. However, while nanoparticle-based therapies have improved toxicological profiles of some drugs, there are still a number of aspects regarding the biocompatibility and toxicity of nanotherapies that require further research. The goal of this article is to review toxicological profiles of immunosuppressant therapies and their conversion into nanomedicine formulations as well as introduce future challenges associated with current in vitro and in vivo toxicological models.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2598
Author(s):  
Małgorzata Idzior-Haufa ◽  
Agnieszka A. Pilarska ◽  
Wiesław Hędzelek ◽  
Piotr Boniecki ◽  
Krzysztof Pilarski ◽  
...  

This paper aims to compare, in vitro, the biomechanical properties of an overdenture retained by two bar-retained implants and an overdenture retained by two bar-retained implants with ball attachments. An edentulous mandible model was prepared for the study based on the FRASACO mold with two implants. In the first system, the “rider” type (PRECI-HORIX, CEKA) retention structure and the complete mandibular denture with the matrix were made. In the second system, the “rider” type retention suprastructure was also used. In the distal part, (CEKA) clips were placed symmetrically, and a complete mandibular denture, together with the matrix on the bar, and the clip patrices were made. A numerical model was developed for each system where all elements were positioned and related to geometric relations, as in reality. The FEA analysis (finite element analysis) was carried out for seven types of loads: with vertical forces of 20, 50, and 100 N and oblique forces of 20 and 50 N acting on individual teeth of the denture, namely central incisor, canine, and first molar. Displacements, stresses, and deformations within the systems were investigated. Maximum denture displacement in the first system was 0.7 mm. Maximum bar stress amounted to 27.528 MPa, and implant stress to 23.16 MPa. Maximum denture displacement in the second system was 0.6 mm. Maximum bar stress amounted to 578.6 MPa, that of clips was 136.99 MPa, and that of implants was 51.418 MPa. Clips cause smaller displacement of the overdenture when it is loaded but generate higher stress within the precision elements and implants compared to a denture retained only by a bar. Regardless of the shape of the precision element, small deformations occur that mainly affect the mucosa and the matrix.


2001 ◽  
Vol 26 (1) ◽  
pp. 263-275
Author(s):  
M.P. Boland ◽  
P. Lonergan ◽  
J.M. Sreenan

AbstractFertility in dairy cows has decreased during the past 50 years and current management procedures have done little to rectify this situation. Following intense selection for increased milk production, there are significantly more problems in establishing pregnancy at the appropriate time. In recent years, major strides have been made in the development of new embryo-based biotechnologies, including in vitro embryo production, ovum pick-up, cryopreservation of gametes and embryos, cloning and sexing of gametes. The objectives of this paper are to review current progress relating to embryo-based technologies in cattle.


1973 ◽  
Vol 12 (2) ◽  
pp. 181-188
Author(s):  
Rafiq Ahmad

Like nations and civilizations, sciences also pass through period of crises when established theories are overthrown by the unpredictable behaviour of events. Economics is passing through such a crisis. The challenge thrown by the Great Depression of early 1930s took a decade before Keynes re-established the supremacy of economics. But this supremacy has again been upset by the crisis of poverty in the vast under-developed world which attained political independence after the Second World War. Poverty had always existed but never before had it been of such concern to economists as during the past twenty five years or so. Economic literature dealing with this problem has piled up but so have the agonies of poverty. No plausible and well-integrated theory of economic development or under-development has emerged so far, though brilliant advances have been made in isolated directions.


2019 ◽  
Vol 24 (45) ◽  
pp. 5367-5374 ◽  
Author(s):  
Xiaoyun Li ◽  
Seyed M. Moosavi-Basri ◽  
Rahul Sheth ◽  
Xiaoying Wang ◽  
Yu S. Zhang

The role of endovascular interventions has progressed rapidly over the past several decades. While animal models have long-served as the mainstay for the advancement of this field, the use of in vitro models has become increasingly widely adopted with recent advances in engineering technologies. Here, we review the strategies, mainly including bioprinting and microfabrication, which allow for fabrication of biomimetic vascular models that will potentially serve to supplement the conventional animal models for convenient investigations of endovascular interventions. Besides normal blood vessels, those in diseased states, such as thrombosis, may also be modeled by integrating cues that simulate the microenvironment of vascular disorders. These novel engineering strategies for the development of biomimetic in vitro vascular structures will possibly enable unconventional means of studying complex endovascular intervention problems that are otherwise hard to address using existing models.


Sign in / Sign up

Export Citation Format

Share Document