scholarly journals Regulation of NADPH Oxidase-Mediated Superoxide Production by Acetylation and Deacetylation

2021 ◽  
Vol 12 ◽  
Author(s):  
Ning Xia ◽  
Stefan Tenzer ◽  
Oleg Lunov ◽  
Martin Karl ◽  
Thomas Simmet ◽  
...  

Oral treatment of apolipoprotein E-knockout (ApoE-KO) mice with the putative sirtuin 1 (SIRT1) activator resveratrol led to a reduction of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in the heart. In contrast, the SIRT1 inhibitor EX527 enhanced the superoxide production in isolated human polymorphonuclear granulocytes. In human monocytic THP-1 cells, phorbol ester-stimulated superoxide production was enhanced by inhibitors of histone deacetylases (HDACs; including quisinostat, trichostatin A (TSA), PCI34051, and tubastatin A) and decreased by inhibitors of histone acetyltransferases [such as garcinol, curcumin, and histone acetyltransferase (HAT) Inhibitor II]. These results indicate that protein acetylation and deacetylation may represent crucial mechanisms regulating NADPH oxidase-mediated superoxide production. In cell-free systems, incubation of recombinant Rac1 with SIRT1 resulted in decreased Rac1 acetylation. Mass spectrometry analyses identified lysine 166 (K166) in Rac1 as a residue targeted by SIRT1. Deacetylation of Rac1 by SIRT1 markedly reduced the interaction of Rac1 with p67phox in in vitro assays. Computational modeling analyses revealed that K166 deacetylation of Rac1 led to a 5-fold reduction in its binding affinity to guanosine-5'-triphosphate, and a 21-fold decrease in its binding potential to p67phox. The latter is crucial for Rac1-mediated recruitment of p67phox to the membrane and for p67phox activation. In conclusion, both SIRT1 and non-sirtuin deacetylases play a role in regulating NADPH oxidase activity. Rac1 can be directly deacetylated by SIRT1 in a cell-free system, leading to an inhibition of Rac1-p67phox interaction. The downstream targets of non-sirtuin deacetylases are still unknown. The in vivo significance of these findings needs to be investigated in future studies.

Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2653-2661 ◽  
Author(s):  
Marianne O. Price ◽  
Linda C. McPhail ◽  
J. David Lambeth ◽  
Chang-Hoon Han ◽  
Ulla G. Knaus ◽  
...  

Abstract The phagocyte nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH) oxidase was functionally reconstituted in monkey kidney COS-7 cells by transfection of essential subunits, gp91phox, p22phox, p47phox, and p67phox. COS-7 cells express the essential small guanosine 5′-triphosphatase, Rac1. Transgenic COS-phox cells were capable of arachidonic acid–induced NADPH oxidase activity up to 80% of that of human neutrophils, and of phorbol myristate acetate (PMA)–induced activity up to 20% of that of neutrophils. Expression of all 4 phox components was required for enzyme activity, and enzyme activation was associated with membrane translocation of p47phox, p67phox, and Rac1. Expression of p47phox Ser303Ala/Ser304Ala or Ser379Ala phosphorylation-deficient mutants resulted in significantly impaired NAPDH oxidase activity, compared with expression of wild-type p47phox or the p47phox Ser303Glu/Ser304Glu phosphorylation mimic, suggesting that p47phoxphosphorylation contributes to enzyme activity in the COS system, as is the case in neutrophils. Hence, COS-phox cells should be useful as a new whole-cell model that is both capable of high-level superoxide production and readily amenable to genetic manipulation for investigation of NADPH oxidase function. PMA-elicited superoxide production in COS-phox cells was regulated by activation of protein kinase C (PKC) and Rac. Although COS-7 cells differ from human neutrophils in PKC isoform expression, transient expression of major neutrophil isoforms in COS-phox cells did not increase PMA-induced superoxide production, suggesting that endogenous isoforms were not rate limiting. Val204 in p67phox, previously shown to be required for NADPH oxidase activity under cell-free conditions, was found to be essential for superoxide production by intact COS-phox cells, on the basis of transfection studies using a p67phox(Val204Ala) mutant.


2008 ◽  
Vol 216 (3) ◽  
pp. 796-804 ◽  
Author(s):  
Rafael Herling Lambertucci ◽  
Sandro Massao Hirabara ◽  
Leonardo dos Reis Silveira ◽  
Adriana Cristina Levada‐Pires ◽  
Rui Curi ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Julie Chao ◽  
Youming Guo ◽  
Lee Chao

Kallistatin was identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin exerts pleiotropic effects on angiogenesis, oxidative stress, inflammation, apoptosis, fibrosis, and tumor growth. Kallistatin levels are markedly reduced in patients with coronary artery disease, sepsis, diabetic retinopathy, inflammatory bowel disease, pneumonia, and cancer. Moreover, plasma kallistatin levels are positively associated with leukocyte telomere length in young African Americans, indicating the involvement of kallistatin in aging. In addition, kallistatin treatment promotes vascular repair by increasing the migration and function of endothelial progenitor cells (EPCs). Kallistatin via its heparin-binding site antagonizes TNF-α-induced senescence and superoxide formation, while kallistatin’s active site is essential for inhibiting miR-34a synthesis, thus elevating sirtuin 1 (SIRT1)/eNOS synthesis in EPCs. Kallistatin inhibits oxidative stress-induced cellular senescence by upregulating Let-7g synthesis, leading to modulate Let-7g-mediated miR-34a-SIRT1-eNOS signaling pathway in human endothelial cells. Exogenous kallistatin administration attenuates vascular injury and senescence in association with increased SIRT1 and eNOS levels and reduced miR-34a synthesis and NADPH oxidase activity, as well as TNF-α and ICAM-1 expression in the aortas of streptozotocin- (STZ-) induced diabetic mice. Conversely, endothelial-specific depletion of kallistatin aggravates vascular senescence, oxidative stress, and inflammation, with further reduction of Let-7g, SIRT1, and eNOS and elevation of miR-34a in mouse lung endothelial cells. Furthermore, systemic depletion of kallistatin exacerbates aortic injury, senescence, NADPH oxidase activity, and inflammatory gene expression in STZ-induced diabetic mice. These findings indicate that endogenous kallistatin displays a novel role in protection against vascular injury and senescence by inhibiting oxidative stress and inflammation.


Blood ◽  
2008 ◽  
Vol 112 (9) ◽  
pp. 3867-3877 ◽  
Author(s):  
Wei Tian ◽  
Xing Jun Li ◽  
Natalie D. Stull ◽  
Wenyu Ming ◽  
Chang-Il Suh ◽  
...  

AbstractThe phagocyte NADPH oxidase generates superoxide for microbial killing, and includes a membrane-bound flavocytochrome b558 and cytosolic p67phox, p47phox, and p40phox subunits that undergo membrane translocation upon cellular activation. The function of p40phox, which binds p67phox in resting cells, is incompletely understood. Recent studies showed that phagocytosis-induced superoxide production is stimulated by p40phox and its binding to phosphatidylinositol-3-phosphate (PI3P), a phosphoinositide enriched in membranes of internalized phagosomes. To better define the role of p40phox in FcγR-induced oxidase activation, we used immunofluorescence and real-time imaging of FcγR-induced phagocytosis. YFP-tagged p67phox and p40phox translocated to granulocyte phagosomes before phagosome internalization and accumulation of a probe for PI3P. p67phox and p47phox accumulation on nascent and internalized phagosomes did not require p40phox or PI3 kinase activity, although superoxide production before and after phagosome sealing was decreased by mutation of the p40phox PI3P-binding domain or wortmannin. Translocation of p40phox to nascent phagosomes required binding to p67phox but not PI3P, although the loss of PI3P binding reduced p40phox retention after phagosome internalization. We conclude that p40phox functions primarily to regulate FcγR-induced NADPH oxidase activity rather than assembly, and stimulates superoxide production via a PI3P signal that increases after phagosome internalization.


2018 ◽  
Vol 4 (1) ◽  
pp. 170-181
Author(s):  
Darrell A. Jackson ◽  
Fanny Astruc-Diaz ◽  
Nicole M. Byrnes ◽  
Phillip H. Beske

Most 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid receptors (AMPARs) expressed on adult hippocampal pyramidal neurons contain the edited form of GluA2 (Q607R) and are thus impermeable to Ca2+/Zn2+ entry.  Following ischemic injury, these receptors undergo a subunit composition change, switching from a GluA2-containing Ca2+/Zn2+-impermeable AMPAR to a GluA2-lacking Ca2+/Zn2+-permeable AMPAR. Recent studies indicate that an oxidative stress signaling pathway is responsible for the I/R-induced changes in AMPAR subunit composition.  Studies suggest that nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase), a superoxide generator, is the source that initiates the oxidative stress-signaling cascade during post-ischemic reperfusion. The objective of the present study was to determine if suppression of NADPH oxidase activity prevents the increase in phosphorylation and subsequent internalization of the GluA2 AMPAR subunit during reperfusion of post-ischemic hippocampal slices. In this study, we demonstrated that exposure of adult rat hippocampal slices to oxygen glucose deprivation/reperfusion (OGD/R) results in an increase in Ser880 phosphorylation of the GluA2 subunit.  The increase in Ser880 phosphorylation resulted in the dissociation of GluA2 from the scaffolding proteins Glutamate receptor-interacting protein 1 (GRIP1) and AMPAR binding protein (ABP), thus enabling the association of GluA2 with protein interacting with C kinase 1 (PICK1). OGD/R also resulted in an increase in the association of activated protein kinase C ? (PKC?) with PICK1. We have found that pharmacological inhibition of NADPH oxidase with apocynin diminishes the OGD/R-induced increase in activated PKC? association with PICK1 and subsequent Ser880 phosphorylation of GluA2. Suppression of NADPH oxidase activity also blunted OGD/R-induced decreased association of GluA2 with the scaffolding proteins GRIP1 and ABP.  Protein phosphatase 2A (PP2A), which regulates PKC? activity by dephosphorylating the kinase, was inactivated by OGD/R-induced increase in tyrosine phosphorylation of the phosphatase (Y307). Inhibition of NADPH oxidase activity ameliorated OGD/R-induced PP2A phosphorylation and inactivation. Our findings are consistent with a model of OGD/R-induced Ser880 phosphorylation of GluA2 that implicates NADPH oxidase mediated inactivation of PP2A and sustained PKC? phosphorylation of GluA2.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2386-2386
Author(s):  
Chaekyun Kim ◽  
Mary C. Dinauer

Abstract Rac2 is a hematopoietic-specific Rho-GTPase implicated as an important constituent of the NADPH oxidase complex. We previously showed that Rac2 plays a stimulus-specific role in regulating NADPH oxidase activation and other functional responses in neutrophils [Kim and Dinauer, JI 166, 2001]. Here we investigate the effect of arachidonic acid (AA) on Rac2-regulated NADPH oxidase activity. Superoxide production in rac2-/- neutrophils was significantly lower (~4-fold) than that of wild-type when stimulated with PMA or AA alone. However, exogenously added AA (10 μM) fully restored the defect in PMA-elicited NADPH oxidase activity in rac2−/ − neutrophils, while having no effect on FMLP-elicited superoxide production. Impaired PMA- or AA-induced F-actin polymerization in rac2−/ − neutrophils was also not restored by co-stimulation with PMA and AA. Taken together, these observations suggest that there are agonist- and pathway-specific differences in the underlying basis of functional defects in rac2−/ − neutrophils. To further investigate possible mechanisms of AA-mediated rescue of PMA-stimulated NADPH oxidase activation in rac2−/ − neutrophils, we measured protein expression and activity of cytosolic phospholipase A2 (cPLA2) and protein kinase C (PKC). The expression of cPLA2 and PMA-stimulated release of AA was similar between wild-type and rac2−/ − neutrophils, suggesting that defects in AA production by PMA-stimulated rac2−/ − neutrophils do not account for the effect of exogenous AA on oxidase activity. The neutrophil expression of PKC isoforms (α, β, δ, ζ) was also similar between genotypes. The cytosolic p47phox and p67phox components of NADPH oxidase were translocated to the plasma membrane upon stimulation with PMA in both genotypes, and no additional translocation in either wild-type or rac2−/ − neutrophils was detected upon co-stimulation with AA. The level of activated Rac1-GTP was similar between genotypes following stimulation, and was not increased by co-stimulation with PMA and AA. These studies indicate that the addition of exogenous AA reconstitutes PMA-elicited superoxide production in rac2−/ − neutrophils independent of the effects on translocation of p47phox and p67phox and activation of Rac1 GTPase. We hypothesize that the effect of AA is exerted through conformational changes of the assembled NADPH oxidase.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 678-678 ◽  
Author(s):  
Wei Tian ◽  
Xing Jun Li ◽  
Natalie D. Stull ◽  
Chang-Il Suh ◽  
Sergio Grinstein ◽  
...  

Abstract Many critical features of the organization and regulation of the phagocyte NADPH oxidase, a complex multi-subunit enzyme that generates superoxide for microbial killing, remain poorly defined. The active enzyme includes a membrane-bound flavocytochrome b along with p47phox, p67phox, p40phox, and Rac-GTP that are present in the cytosol of resting cells. p67phox is linked by high affinity interactions with both p47phox and p40phox, which appear to translocate as a trimeric complex upon cellular activation. The p47phox subunit acts as an adaptor to promote translocation by docking at a proline-rich target sequence on the flavocytochrome, and p67phox is a Rac-GTP effector containing a domain that activates electron transport. In contrast, the function of p40phox, which is not required for high level oxidase activity in cell free systems, is poorly understood. Recently, our group showed that p40phox plays key role in the activation of superoxide production during phagocytosis of IgG-opsonized targets in COSphoxFcγR cells. This model cell line contains stable transgenes for the flavocytochrome, p47phox, p67phox, and the FcγIIA receptor, without or with an additional transgene for p40phox. p40phox-dependent coupling of FcγR-mediated phagocytosis to superoxide production required an intact p40phox PX domain, which binds to phosphatidylinositol-3-phosphate (PI3P), a phosphoinositide generated by class III PI3 kinases in phagosome membranes (Suh et al J Exp Med 203, 1915Suh et al J Exp Med 203, 2006). Furthermore, a newly developed p40phox-null mouse exhibits reduced neutrophil NADPH oxidase activity in response to selected agonists, including IgG-opsonized targets (Ellson et al J Exp Med 203, 1927Ellson et al J Exp Med 203, 2006). In the current study, we investigated whether p40phox is required for translocation of p67phox during phagocytosis. We generated COSphoxFcγR cells expressing YFP-tagged p67phox from a stable transgene instead of untagged p67phox. Following incubation with IgG-opsonized sheep red blood cells (IgG-RBC), p67phox was detected on phagosome membranes at both early stages of phagosome cup formation and after closure, independent of whether or not p40phox was also co-expressed. However, NADPH oxidase activity was not detected in IgG-RBC phagosomes in COSphoxFcγR-p67phox-YFP cells unless p40phox was present. PMA-activated superoxide production was independent of p40phox, and Western blotting indicated there was no significant difference in expression of the other oxidase subunits in COSphoxFcγR-p67phox-YFP cells without or with the p40phox transgene. Further studies in PLB-985 granulocytes expressing stable transgenes for either YFP-tagged p67phox or p40phox showed that the PI3K inhibitor wortmannin inhibited phagosome NADPH oxidase activity and translocation of p40phox, but localization of p67phox to phagosomes was unaffected. These results indicate that although p40phox positively regulates NADPH oxidase activation during phagocytosis, recruitment of p67phox to the phagosome is independent of p40phox. Taken together, these data suggest that the PX domain of p40phox acts as a PI3P-dependent switch to activate the membrane-assembled NADPH oxidase complex.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Hui Yu ◽  
Lei Qin ◽  
Hai Hu ◽  
Zhanli Wang

Background. The purpose of this study was to evaluate the alteration of the gut microbiota and its effect on adenosine monophosphate-activated protein kinase (AMPK)/nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) signaling pathway in two-kidney one-clip (2K1C) rats. Methods. The 2K1C rat models were established. The rats were randomly divided into the following 2 groups: 2K1C group and sham group. Alterations of the gut microbiota were analyzed based on the high throughput sequencing method. Plasma concentrations of short chain fatty acids (SCFAs) were measured by chromatography. The protein expression of phosphorylated AMPK and acetyl-CoA carboxylase (ACC) was determined by western blotting. NADPH oxidase activity was measured by a luminometer. Results. Microbial community analyses revealed that the structure and composition of the gut microbiota were significantly disrupted in 2K1C rats when compared to sham rats. This disruption was associated with the drastic increase in relative abundance of the genera Prevotella and the decrease in SCFA-producing bacterial population. We further confirm that SCFAs produced by the gut microbiota influence NADPH oxidase activity through AMPK. Conclusions. Our data implicated the important role of gut microbiota in the regulation of AMPK/NADPH oxidase signaling pathway.


1999 ◽  
Vol 276 (6) ◽  
pp. R1587-R1594 ◽  
Author(s):  
Christopher C. Nessel ◽  
William L. Henry ◽  
Balduino Mastrofrancesco ◽  
Jonathan S. Reichner ◽  
Jorge E. Albina

Macrophages from experimental wounds in rats were tested for their capacity to generate reactive oxygen intermediates. Measurements of superoxide and H2O2release, [Formula: see text]-dependent lucigenin chemiluminescence, oxygen consumption, hexose monophosphate shunt flux, and NADPH oxidase activity in cell lysates indicated, at best, the presence of a vestigial respiratory burst response in these cells. The inability of wound cells to release[Formula: see text] was not rekindled by priming with endotoxin or interferon-γ in vivo or in vitro. NADPH oxidase activity in a cell-free system demonstrated that wound macrophage membranes, but not their cytosols, were capable of sustaining maximal rates of [Formula: see text] production when mixed with their corresponding counterparts from human neutrophils. Immune detection experiments showed wound macrophages to be particularly deficient in the cytosolic component of the NADPH oxidase p47- phox. Addition of recombinant p47- phox to the human neutrophil-cell membrane/wound macrophage cytosol cell-free oxidase assay, however, failed to support[Formula: see text] production. Present findings indicate an unexpected deficit of wound macrophages in their capacity to generate reactive oxygen intermediates.


Sign in / Sign up

Export Citation Format

Share Document