scholarly journals Excessive Accumulation of Intracellular Ca2+ After Acute Exercise Potentiated Impairment of T-cell Function

2021 ◽  
Vol 12 ◽  
Author(s):  
Renyi Liu ◽  
Karsten Krüger ◽  
Christian Pilat ◽  
Wei Fan ◽  
Yu Xiao ◽  
...  

Ca2+ is an important intracellular second messenger known to regulate several cellular functions. This research aimed to investigate the mechanisms of exercise-induced immunosuppression by measuring intracellular calcium levels, Ca2+-regulating gene expression, and agonist-evoked proliferation of murine splenic T lymphocytes. Mice were randomly assigned to the control, sedentary group (C), and three experimental groups, which performed a single bout of intensive and exhaustive treadmill exercise. Murine splenic lymphocytes were separated by density-gradient centrifugation immediately (E0), 3h (E3), and 24h after exercise (E24). Fura-2/AM was used to monitor cytoplasmic free Ca2+ concentration in living cells. The combined method of carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling and flow cytometry was used for the detection of T cell proliferation. The transcriptional level of Ca2+-regulating genes was quantified by using qPCR. Both basal intracellular Ca2+ levels and agonist (ConA, OKT3, or thapsigargin)-induced Ca2+ transients were significantly elevated at E3 group (p<0.05 vs. control). However, mitogen-induced cell proliferation was significantly decreased at E3 group (p<0.05 vs. control). In parallel, the transcriptional level of plasma membrane Ca2+-ATPases (PMCA), sarco/endoplasmic reticulum Ca2+-ATPases (SERCA), TRPC1, and P2X7 was significantly downregulated, and the transcriptional level of IP3R2 and RyR2 was significantly upregulated in E3 (p<0.01 vs. control). In summary, this study demonstrated that acute exercise affected intracellular calcium homeostasis, most likely by enhancing transmembrane Ca2+ influx into cells and by reducing expression of Ca2+-ATPases such as PMCA and SERCA. However, altered Ca2+ signals were not transduced into an enhanced T cell proliferation suggesting other pathways to be responsible for the transient exercise-associated immunosuppression.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 986-986 ◽  
Author(s):  
Christina Krupka ◽  
Franziska Brauneck ◽  
Felix S Lichtenegger ◽  
Peter Kufer ◽  
Roman Kischel ◽  
...  

Abstract Bispecific T-cell engager (BiTE®) antibodies represent a promising tool for anti-leukemic immunotherapy. The CD19/CD3-bispecific antibody blinatumomab was shown to be active in refractory and relapse patients with B-precursor acute lymphoblastic leukemia (Topp et al, ASCO 2014). Transient, blinatumomab-mediated cytokine release syndrome has been linked to target cell numbers as this phenomenon is predominantly observed within the first treatment cycle. In our previous work, we demonstrated that the bispecific CD33/CD3 BiTE® antibody AMG 330 is able to induce activation and proliferation of residual autologous T-cells and effectively mediates lysis of primary acute myeloid leukemia (AML) cells (Krupka et al, Blood 2014; 123(3):356-65). We hypothesize that in AML patients with high initial leukocyte counts (WBC > 30.000/μl) a cytoreductive phase prior to AMG 330 therapy might be beneficial to reduce the incidence and severity of cytokine mediated toxicity. Ideally, the cytoreductive drug does not impair T-cell function or reduce target antigen expression level. In the current study, we evaluated the effect of cytarabine (20 µM), decitabine (5 µM), azacitidine (1 µM and 5 µM) and hydroxyurea (10 µM and 100 µM) on T-cell proliferation and function in close analogy to potential treatment algorithms for AML. Healthy donor (HD) T-cells were pre-incubated with the cytoreductive drugs for 72 hours. T-cells were CFSE-labeled and co-cultured with either HL60 or MV4-11 cells (effector cell:target (E:T) ratio 1:1) in the presence or absence of AMG 330 (5 ng/ml). After 3 days of co-culture, lysis of HL60 cells and T-cell proliferation was assessed by flow cytometry. Pretreatment of T-cells with cytarabine completely abrogated T-cell function (lysis of HL60 cells: untreated (UT): 96.9% vs 20 µM: 4.2%) and significantly impaired T-cell proliferation (UT: 31.2% vs 20 µM: 4.6%). These findings correlated to data using primary AML samples collected 3 and 6 days after discontinuation of cytarabine treatment. After a 3-day chemotherapy-free interval, we observed no relevant T-cell proliferation and lysis of AML cells upon the addition of AMG 330 to the ex-vivo long-term culture system (lysis of AML cells on day 12: 30%; fold change T-cell expansion 0.9). After a 6-day treatment-free interval, high T-cell proliferation and cytotoxicity against primary AML cells were observed (lysis of AML cells on day 12: 61%; fold change T-cell expansion: 3.1). In contrast to cytarabine, decitabine treatment only marginally impaired T-cell function. Similarly, pre-incubation with azacitidine did not convey a negative effect on T-cell function (lysis of HL60 cells: UT: 100% vs 1 µM: 94.9% vs 5µM: 86.8%; proliferation: UT: 90.9% vs 1 µM: 80% vs 5 µM: 66.8%). Pretreatment with hydroxyurea had the least impact on T-cell performance. It did not impair T-cell function (lysis of HL60 cells: UT: 100% vs 10 µM: 100% vs 100 µM: 100%) and proliferation compared to untreated controls (UT: 92.9% vs 100 µM 90.8% vs 10 µM 92.9%). As we have previously shown that the level of CD33 expression correlates to kinetics of AMG 330-mediated lysis (Krupka et.al, EHA 2014), we analyzed the effect of the cytoreductive agents on CD33 expression level in AML cell lines and primary AML cells. Five AML cell lines (HL60, MV4-11, PL21, OCI-AML3, KG1a) and a primary AML patient sample were cultured in the presence or absence of decitabine (5 µM and 50 µM), azacitidine (1 µM and 5 µM) or hydroxyurea (10 µM and 100 µM) for 72 hours. The change of CD33 expression level was evaluated by flow cytometry (median fluorescence intensity, MFI). No significant changes in CD33 expression level were observed after culture of AML cell lines and primary AML cells with decitabine or azacitidine. In contrast, hydroxyurea upregulated surface expression of CD33 on 2/5 cell lines (HL60 and PL21) in a dose dependent manner (HL 60 MFI Ratio: UT 134.9 vs 10 µM 171.3 vs 100 µM 210; PL21 MFI Ratio: UT 166.9 vs 10 µM 177.9 vs 100 µM 191.8). In summary, we could show that pretreatment with hydroxyurea did not impair T-cell function and proliferation. In addition, we observed an upregulation of CD33 expression on AML cell lines. As the BiTE® technology relies on T-cell function and target antigen expression level, sequential and combinatorial immuno-chemotherapeutic approaches need to address both issues. Our data support the use of hydroxyurea in AML patients that require cytoreduction prior to AMG 330 treatment. Disclosures Krupka: AMGEN Inc.: Research Funding. Kufer:AMGEN Research (Munich): Employment; AMGEN Inc.: Equity Ownership. Kischel:AMGEN Research (Munich): Employment; AMGEN Inc.: Equity Ownership. Zugmaier:AMGEN Inc.: Equity Ownership; AMGEN Research (Munich): Employment. Sinclair:AMGEN Inc.: Employment, Equity Ownership. Newhall:AMGEN Inc.: Employment, Equity Ownership. Frankel:AMGEN Inc.: Employment, Equity Ownership. Baeuerle:AMGEN Research (Munich): Employment; AMGEN Inc.: Equity Ownership. Riethmüller:AMGEN Inc.: Equity Ownership. Subklewe:AMGEN Inc.: Research Funding.


2005 ◽  
Vol 289 (1) ◽  
pp. R37-R44 ◽  
Author(s):  
Xiaoling Li ◽  
Shadab N. Rana ◽  
Elizabeth J. Kovacs ◽  
Richard L. Gamelli ◽  
Irshad H. Chaudry ◽  
...  

Previous studies showed that alcohol (EtOH) intoxication before burn injury suppresses mesenteric lymph node (MLN) T cell functions and increases gut bacterial translocation. In this study, we examined whether corticosterone (Cort) plays any role in suppressing MLN T cell function and bacterial accumulation after EtOH intoxication and burn injury. Rats were gavaged with EtOH to achieve a blood EtOH level of ∼100 mg/dl before receiving 25% total body surface area burn or sham injury. A group of rats was treated with the Cort synthesis inhibitor metyrapone (25 mg/kg) at the time of injury and on day 1 after injury. Two days after injury, a significant increase in blood Cort levels and suppression of MLN T cell proliferation and IL-2 production was observed in rats receiving combined insult of EtOH intoxication and burn injury compared with rats receiving EtOH intoxication or burn injury alone. There was no change in T cell apoptosis after combined insult of EtOH and burn injury. Furthermore, T cell suppression was accompanied by a significant decrease in p38 and ERK1/2 activation (phosphorylation). There was no difference in JNK activation after EtOH and burn injury. Treatment of rats with metyrapone prevented the suppression of MLN T cell proliferation, IL-2 production, and p38 and ERK1/2 phosphorylation. Restoration of T cell function in metyrapone-treated animals was also associated with the decrease in bacterial accumulation in MLN. These findings suggest that EtOH intoxication before burn injury augments Cort release, which suppresses MLN T cell function by inhibiting p38 and ERK1/2 activation and promotes bacterial accumulation in MLN after EtOH and burn injury.


2010 ◽  
Vol 298 (3) ◽  
pp. C457-C464 ◽  
Author(s):  
Tiecheng Yu ◽  
Wolfgang G. Junger ◽  
Changji Yuan ◽  
An Jin ◽  
Yi Zhao ◽  
...  

Shockwaves elicited by transient pressure disturbances are used to treat musculoskeletal disorders. Previous research has shown that shockwave treatment affects T-cell function, enhancing T-cell proliferation and IL-2 expression by activating p38 mitogen-activated protein kinase (MAPK) signaling. Here we investigated the signaling pathway by which shockwaves mediate p38 MAPK phosphorylation. We found that shockwaves at an intensity of 0.18 mJ/mm2induce the release of extracellular ATP from human Jurkat T-cells at least in part by affecting cell viability. ATP released into the extracellular space stimulates P2X7-type purinergic receptors that induce the activation of p38 MAPK and of focal adhesion kinase (FAK) by phosphorylation on residues Tyr397 and Tyr576/577. Elimination of released ATP with apyrase or inhibition of P2X7 receptors with the antagonists KN-62 or suramin significantly weakens FAK phosphorylation, p38 MAPK activation, IL-2 expression, and T-cell proliferation. Conversely, addition of exogenous ATP causes phosphorylation of FAK and p38 MAPK. Silencing of FAK expression also reduces these cell responses to shockwave treatment. We conclude that shockwaves enhance p38 MAPK activation, IL-2 expression, and T-cell proliferation via the release of cellular ATP and feedback mechanisms that involve P2X7 receptor activation and FAK phosphorylation.


2001 ◽  
Vol 193 (3) ◽  
pp. 317-328 ◽  
Author(s):  
Kanaga Sabapathy ◽  
Tuula Kallunki ◽  
Jean-Pierre David ◽  
Isabella Graef ◽  
Michael Karin ◽  
...  

Apoptotic and mitogenic stimuli activate c-Jun NH2-terminal kinases (JNKs) in T cells. Although T cells express both JNK1 and JNK2 isozymes, the absence of JNK2 alone can result in resistance to anti-CD3–induced thymocyte apoptosis and defective mature T cell proliferation. Similar defects in thymocyte apoptosis and mature T cell proliferation, the latter due to reduced interleukin 2 production, are also caused by JNK1 deficiency. Importantly, T cell function was compromised in Jnk1+/−Jnk2+/− double heterozygous mice, indicating that JNK1 and JNK2 play similar roles in regulating T cell function. The reduced JNK dose results in defective c-Jun NH2-terminal phosphorylation in thymocytes but not in peripheral T cells, in which nuclear factors of activated T cells (NK-ATs)–DNA binding activity is affected. Thus, JNK1 and JNK2 control similar functions during T cell maturation through differential targeting of distinct substrates.


2004 ◽  
Vol 36 (11) ◽  
pp. 741-748 ◽  
Author(s):  
Tie-Cheng Yu ◽  
Yi Liu ◽  
Yan Tan ◽  
Yanfang Jiang ◽  
Xueqing Zheng ◽  
...  

Abstract Shock waves were elicited by transient pressure disturbances, which could be used to treat musculoskeletal disorders. In present studies, we investigated whether the low-density shock waves (LDSWs), which are able to damage plasma membrane without impairing the vimentin or other organelles, might augment T-cell proliferation as well as IL-2 expression, and if mitogen activated protein kinase p38 (p38 MAPK) might be an underlying mechanism through which the LDSWs enhanced T-cell function. We found that the LDSWs increased activation of p38 MAPK in Jurkat T cells. The LDSWs alone didn't result in the T-cell proliferation and IL-2 expression. However, in combination with other stimuli, LDSWs could augment the T-cell proliferation and IL-2 expression. Inhibition of p38 MAPK using SB203580 reduced the stimulatory effects of the LDSWs, which indicated that the LDSWs enhanced IL-2 expression through a mechanism that involved p38 MAPK activation. We concluded that the p38 MAPK activation played a key role in the regulation of T cell function by the LDSWs.


2005 ◽  
Vol 201 (11) ◽  
pp. 1793-1803 ◽  
Author(s):  
Claudia R. Ruprecht ◽  
Marco Gattorno ◽  
Francesca Ferlito ◽  
Andrea Gregorio ◽  
Alberto Martini ◽  
...  

A better understanding of the role of CD4+CD25+ regulatory T cells in disease pathogenesis should follow from the discovery of reliable markers capable of discriminating regulatory from activated T cells. We report that the CD4+CD25+ population in synovial fluid of juvenile idiopathic arthritis (JIA) patients comprises both regulatory and effector T cells that can be distinguished by expression of CD27. CD4+CD25+CD27+ cells expressed high amounts of FoxP3 (43% of them being FoxP3+), did not produce interleukin (IL)-2, interferon-γ, or tumor necrosis factor, and suppressed T cell proliferation in vitro, being, on a per cell basis, fourfold more potent than the corresponding peripheral blood population. In contrast, CD4+CD25+CD27− cells expressed low amounts of FoxP3, produced effector cytokines and did not suppress T cell proliferation. After in vitro activation and expansion, regulatory but not conventional T cells maintained high expression of CD27. IL-7 and IL-15 were found to be present in synovial fluid of JIA patients and, when added in vitro, abrogated the suppressive activity of regulatory T cells. Together, these results demonstrate that, when used in conjunction with CD25, CD27 is a useful marker to distinguish regulatory from effector T cells in inflamed tissues and suggest that at these sites IL-7 and IL-15 may interfere with regulatory T cell function.


Sign in / Sign up

Export Citation Format

Share Document