scholarly journals Flush Flow Behaviour Affected by the Morphology of Intravascular Endoscope: A Numerical Simulation and Experimental Study

2021 ◽  
Vol 12 ◽  
Author(s):  
Yujie Li ◽  
Mingzi Zhang ◽  
Simon Tupin ◽  
Kohei Mitsuzuka ◽  
Toshio Nakayama ◽  
...  

Background: Whilst intravascular endoscopy can be used to identify lesions and assess the deployment of endovascular devices, it requires temporary blockage of the local blood flow during observation, posing a serious risk of ischaemia.Objective: To aid the design of a novel flow-blockage-free intravascular endoscope, we explored changes in the haemodynamic behaviour of the flush flow with respect to the flow injection speed and the system design.Methods: We first constructed the computational models for three candidate endoscope designs (i.e., Model A, B, and C). Using each of the three endoscopes, flow patterns in the target vessels (straight, bent, and twisted) under three different sets of boundary conditions (i.e., injection speed of the flush flow and the background blood flowrate) were then resolved through use of computational fluid dynamics and in vitro flow experiments. The design of endoscope and its optimal operating condition were evaluated in terms of the volume fraction within the vascular segment of interest, as well as the percentage of high-volume-fraction area (PHVFA) corresponding to three cross-sectional planes distal to the microcatheter tip.Results: With a mild narrowing at the endoscope neck, Model B exhibited the highest PHVFA, irrespective of location of the cross-sectional plane, compared with Models A and C which, respectively, had no narrowing and a moderate narrowing. The greatest difference in the PHVFA between the three models was observed on the cross-sectional plane 2 mm distal to the tip of the microcatheter (Model B: 33% vs. Model A: 18%). The background blood flowrate was found to have a strong impact on the resulting volume fraction of the flush flow close to the vascular wall, with the greatest difference being 44% (Model A).Conclusion: We found that the haemodynamic performance of endoscope Model B outperformed that of Models A and C, as it generated a flush flow that occupied the largest volume within the vascular segment of interest, suggesting that the endoscope design with a diameter narrowing of 30% at the endoscope neck might yield images of a better quality.

2002 ◽  
Vol 7 (2) ◽  
pp. 247-251 ◽  
Author(s):  
Masahiko Noguchi ◽  
Toshiya Kitaura ◽  
Kazuya Ikoma ◽  
Yoshiaki Kusaka

Author(s):  
Duncan Joyce ◽  
William J. Parnell ◽  
Raphaël C. Assier ◽  
I. David Abrahams

In Parnell & Abrahams (2008 Proc. R. Soc. A 464 , 1461–1482. ( doi:10.1098/rspa.2007.0254 )), a homogenization scheme was developed that gave rise to explicit forms for the effective antiplane shear moduli of a periodic unidirectional fibre-reinforced medium where fibres have non-circular cross section. The explicit expressions are rational functions in the volume fraction. In that scheme, a (non-dilute) approximation was invoked to determine leading-order expressions. Agreement with existing methods was shown to be good except at very high volume fractions. Here, the theory is extended in order to determine higher-order terms in the expansion. Explicit expressions for effective properties can be derived for fibres with non-circular cross section, without recourse to numerical methods. Terms appearing in the expressions are identified as being associated with the lattice geometry of the periodic fibre distribution, fibre cross-sectional shape and host/fibre material properties. Results are derived in the context of antiplane elasticity but the analogy with the potential problem illustrates the broad applicability of the method to, e.g. thermal, electrostatic and magnetostatic problems. The efficacy of the scheme is illustrated by comparison with the well-established method of asymptotic homogenization where for fibres of general cross section, the associated cell problem must be solved by some computational scheme.


2010 ◽  
Vol 655 ◽  
pp. 258-279 ◽  
Author(s):  
JIMMY PHILIP ◽  
JACOB COHEN

Experimental investigation of the generation and decay of coherent structures, namely, streaks (accompanied by a counter-rotating vortex pair) and hairpin vortices in pipe flow, is carried out by artificial injection of continuous disturbances. Flow visualization and velocity measurements show that for small amplitudes of disturbances (v0) streaks are produced, and increasing v0 produces instability waves on the streaks, which further break down into an array of hairpin vortices. However, the streaks and hairpins decay along the downstream direction (X). In fact, the critical value of v0 required for the initiation of hairpins at a given Re (Reynolds number) varies with the streamwise distance (in contrast to the previously found scaling of v0 ~ Re−1, valid only close to the location of injection, i.e. smaller X). This is a consequence of the decay of the coherent structures in the pipe. Moreover, the hairpins have been found to decay more slowly with increasing Re. Measurements of energy in the cross-sectional plane of the pipe, and maps of disturbance velocity at various X-locations show the transient growth and decay of energy for relatively low v0. For higher v0 and Re the energy has been seen to increase continuously along the length of the pipe under observation. Owing to the increase in the cross-sectional area occupied by the disturbance along the X-direction, it is observed that energy can transiently increase even when the total disturbance magnitude is decreasing. Observing the similarity of the present work and other investigations wherein decay of turbulence in pipe flow is found, a schematic illustration of the transition surface for pipe flow on a v0−Re−X, three-dimensional coordinate system is presented.


2008 ◽  
Vol 15 (2) ◽  
pp. 179-192 ◽  
Author(s):  
Jiao Sujuan ◽  
Li Jun ◽  
Hua Hongxing ◽  
Shen Rongying

The spectral element matrix is derived for a straight and uniform beam element having an arbitrary cross-section. The general higher-order beam theory is used, which accurately accounts for the transverse shear deformation out of the cross-sectional plane and antielastic-type deformation within the cross-sectional plane. Two coupled equations of motion are derived by use of Hamilton's principle along with the full three-dimensional constitutive relations. The theoretical expressions of the spectral element matrix are formulated from the exact solutions of the coupled governing equations. The developed spectral element matrix is directly applied to calculate the exact natural frequencies and mode shapes of the illustrative examples. Numerical results of the thick isotropic beams with rectangular and elliptical cross-sections are presented for a wide variety of cross-section aspect ratios.


1985 ◽  
Vol 58 (4) ◽  
pp. 1354-1359 ◽  
Author(s):  
S. G. Kelsen ◽  
M. Ference ◽  
S. Kapoor

The present study examined the effect of prolonged undernutrition on diaphragmatic structure and force-generating ability. Studies were performed on 58 Syrian hamsters in which the feed was reduced by 33% for a 4-wk period. Sixty animals fed a similar diet ad libitum served as controls. Diaphragm muscle structure was assessed from its mass (wet and dry weight), thickness, fiber composition, and fiber size. Isometric force produced in vitro by isolated muscle strips in response to electrical stimulation of the phrenic nerve was examined over a range of muscle lengths (length-tension relationship). In undernourished animals, body weight decreased 25 +/- 5%. Diaphragm wet and dry weight, muscle thickness, and the cross-sectional area of fast-glycolytic (FG) and fast-oxidative (FO) fibers were significantly less in undernourished than control animals and correlated with reductions in body weight. The cross-sectional area of slow-oxidative (SO) fibers was the same in the two groups. The percentage of FG fibers in undernourished animals was decreased slightly and the percentage of SO fibers increased. Maximum isometric tension was reduced in undernourished animals as compared with controls, but the position and shape of the length-tension relationship was the same in the two groups. Reductions in muscle force appeared to be explained by decreases in muscle mass, since tension corrected for cross-sectional area or tissue weight was the same in the two groups. Therefore muscle mechanical efficiency appeared to be unaffected by undernutrition. These data indicate that prolonged undernutrition causes deleterious changes in diaphragm muscle structure that impair its ability to generate force.


2015 ◽  
Vol 48 (8) ◽  
pp. 1356-1363 ◽  
Author(s):  
Piotr Łuczkiewicz ◽  
Karol Daszkiewicz ◽  
Wojciech Witkowski ◽  
Jacek Chróścielewski ◽  
Witold Zarzycki

Author(s):  
Koji Miyoshi ◽  
Akira Nakamura

Many pipes branch off from the main pipes in power plants. Main flow with high velocity initiates a cavity flow in a downward branch pipe with a closed end. Hot water penetrates into the branch pipe and a thermally stratified layer forms in the branch pipe if the main flow is hot. Fluctuations of the thermally stratified layer may initiate wall temperature fluctuations and thermal fatigue cracks in the branch pipe. Penetration depth of the main flow and the fluctuation characteristics into the branch pipe with a closed end were investigated by experiments. Experiments were conducted for various inner diameters of a branch pipe and main flow velocities under room temperature conditions. Flow structure was observed by test section made of acrylic resin. A tracer method was used to measure the penetration depth of the main flow. The penetration depth of the main flow changed periodically. The maximum penetration depth of the main flow was correlated by the Reynolds number. The fluctuation range and period of the penetration depth were also investigated. Next, the flow patterns on the cross-sectional plane in the branch pipe were observed to investigate the fluctuation mechanism of penetration depth. Three flow patterns were observed on the cross-sectional plane in the branch pipe. They were flow parallel to the cross-sectional direction, flow consisting of small vortexes and large swirl flow. The generation period of the large swirl flow was nearly equal to the fluctuation period of the penetration depth. The fluctuation range of the penetration depth and the duration showed similar trends for different inner diameters of the branch pipe. These results showed that the fluctuation of the penetration depth was caused by the periodic generation of the large swirl flow.


Author(s):  
Yong Ren ◽  
Wallace Woon-Fong Leung

The flow and mixing in rotating zigzag microchannel is investigated experimentally and numerically with objective of improving mixing, which is largely due to secondary or cross-flow in the cross-sectional plane of the channel and the bend connecting non-radial angled channel segments. Unlike the conventional stationary zigzag channel, crossflow in the zigzag channel is highly intensified from a combination of (a) centrifugal acceleration component in the cross-sectional plane due to the angled channel segments, (b) centrifugal acceleration generating Görtler vortices at “channel bends”, and (c) Coriolis acceleration. When the channel segment in the zigzag channel is inclined towards rotation direction (prograde), all three accelerations are aligned intensifying the crossflow; however, when it is inclined opposite to rotation (retrograde), Coriolis acceleration negates the other two accelerations reducing mixing. A numerical model has been developed accurately accounting for the interactions of throughflow, crossflow and material dispersion by diffusion and convection in a rotational platform. An experimental microfluidic platform with rotating zigzag microchannel has also been developed. Experimental results on mixing quality carried out at two rotation speeds compared well with prediction from the numerical model. The overall mixing quality of a rotating zigzag channel is much improved compared with that of a stationary zigzag channel.


2019 ◽  
Vol 875 ◽  
pp. 1-43 ◽  
Author(s):  
Brendan Harding ◽  
Yvonne M. Stokes ◽  
Andrea L. Bertozzi

We develop a model of the forces on a spherical particle suspended in flow through a curved duct under the assumption that the particle Reynolds number is small. This extends an asymptotic model of inertial lift force previously developed to study inertial migration in straight ducts. Of particular interest is the existence and location of stable equilibria within the cross-sectional plane towards which particles migrate. The Navier–Stokes equations determine the hydrodynamic forces acting on a particle. A leading-order model of the forces within the cross-sectional plane is obtained through the use of a rotating coordinate system and a perturbation expansion in the particle Reynolds number of the disturbance flow. We predict the behaviour of neutrally buoyant particles at low flow rates and examine the variation in focusing position with respect to particle size and bend radius, independent of the flow rate. In this regime, the lateral focusing position of particles approximately collapses with respect to a dimensionless parameter dependent on three length scales: specifically, the particle radius, duct height and duct bend radius. Additionally, a trapezoidal-shaped cross-section is considered in order to demonstrate how changes in the cross-section design influence the dynamics of particles.


Sign in / Sign up

Export Citation Format

Share Document