scholarly journals Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density

2017 ◽  
Vol 8 ◽  
Author(s):  
Anton P. Wasson ◽  
Grace S. Chiu ◽  
Alexander B. Zwart ◽  
Timothy R. Binns
2016 ◽  
Author(s):  
Anton P. Wasson ◽  
Grace S. Chiu ◽  
Alexander B. Zwart ◽  
Timothy R. Binns

AbstractWheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a Bayesian hierarchical nonlinear modeling approach that utilizes the complete field data for wheat genotypes to fit anidealizedrelative intensity function for the root distribution over depth. Our approach was used to determineheritability: how much of the variation between field samples was purely random versus being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our Bayesian analysis led to denoised profiles which exhibited rigorously discernible phenotypic traits. The profile-specific traits could be representative of a genotype and thus can be used as a quantitative tool to associate phenotypic traits with specific genotypes.


2014 ◽  
Vol 1 (3) ◽  
pp. 57-61
Author(s):  
E. Kopylov

Aim. To study the specifi cities of complex inoculation of spring wheat roots with the bacteria of Azospirillum genus and Chaetomium cochliodes Palliser 3250, and the isolation of bacteria of Azospirillum genus, capable of fi xing atmospheric nitrogen, from the rhizospheric soil, washed-off roots and histoshere. Materials and meth- ods. The phenotypic features of the selected bacteria were identifi ed according to Bergi key. The molecular the polymerase chain reaction and genetic analysis was used for the identifi cation the bacteria. Results. It has been demonstrated that during the introduction into the root system of spring wheat the strain of A. brasilensе 102 actively colonizes rhizospheric soil, root surface and is capable of penetrating into the inner plant tissues. Conclusions. The soil ascomucete of C. cochliodes 3250 promotes better settling down of Azospirillum cells in spring wheat root zone, especially in plant histosphere which induces the increase in the content of chlorophyll a and b in the leaves and yield of the crop.


2014 ◽  
Vol 42 (4) ◽  
pp. 677-686
Author(s):  
M. Rajabi Hashjin ◽  
M.H. Fotokian ◽  
M. Agahee Sarbrzeh ◽  
M. Mohammadi ◽  
D. Talei

Sign in / Sign up

Export Citation Format

Share Document