scholarly journals QTL Identification for Cooking and Eating Quality in indica Rice Using Multi-Parent Advanced Generation Intercross (MAGIC) Population

2018 ◽  
Vol 9 ◽  
Author(s):  
Kimberly S. Ponce ◽  
Guoyou Ye ◽  
Xiangqian Zhao
2020 ◽  
Vol 92 (2) ◽  
pp. 365-373 ◽  
Author(s):  
Ya Zhang ◽  
Kimberly S. Ponce ◽  
Lijun Meng ◽  
Panchali Chakraborty ◽  
Qingyuan Zhao ◽  
...  

2021 ◽  
Vol 57 (No. 1) ◽  
pp. 9-18
Author(s):  
Haifei Zhao ◽  
Wei Yan ◽  
Kunjiang Yu ◽  
Tianya Wang ◽  
Aimal Nawaz Khattak ◽  
...  

Agronomic traits are usually determined by multiple quantitative trait loci (QTLs) that can have pleiotropic effects. A multiparent advanced generation intercross (MAGIC) population is well suited for genetically analysing the effects of multiple QTLs on the traits of interest because it contains more QTL alleles than a biparental population and can overcome the problem of confounding the population structure of the natural germplasm population. We previously developed the B. juncea MAGIC population, derived from eight B. juncea lines with great diversity in agronomic and quality traits. In this study, we show that the B. juncea MAGIC population is also effective for the evaluation of multiple QTLs for complex agronomic traits in B. juncea. A total of twenty-two QTLs for nine seed-related traits were identified, including one QTL for each oil content, seed number per silique and thousand-seed weight; two QTLs for each acid detergent lignin and neutral detergent fibre; three QTLs for each acid detergent fibre and protein content; four QTLs for the seed maturity time; and five QTLs for the white index. Some of these QTLs overlapped. These results should be helpful for further fine mapping, gene cloning, plant breeding and marker-assisted selection (MAS) in B. juncea.


2014 ◽  
pp. 77-82
Author(s):  
N. B. Nessreen ◽  
A. K. Ammar ◽  
A. Ezzat

Some Egyptian rice genotypes [i.e. Japonica (Sakha 104), Japonica/Indica (Egyptian hybrid1) and Indica (Giza 182)] were investigated to evaluate the cooking and eating quality characters. High significant differences in grain shape were observed among rice genotypes. Hulling, milling and head rice percentage were higher in Sakha 104 than other rice genotypes, while Indica type (Giza 182) recorded the lowest values in milling and physical characters. No significant differences were found in chemical composition of the three genotypes of rice was recorded, but Giza 182 had the highest protein content. All Egyptian rice genotypes were low in gelatinization temperature and soft in gel consistency. Japonica and Indica rice varieties were low in amylase content, while Japonica/Indica rice variety was intermediate. The use of RVA is considered a good index for palatability evaluation for milled rice flour and starch. The Indica and Japonica/Indica types are low in breakdown viscosity, but higher in cooked pasta than Japonica type. Japonica type recorded the best score in panel test, followed by Indica type, while Indica/Japonica rice variety was the least accepted by Egyptian consumer.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Shilei Liu ◽  
Wenli Zou ◽  
Xiang Lu ◽  
Jianmin Bian ◽  
Haohua He ◽  
...  

Zinc (Zn) is an essential trace element for the growth and development of both humans and plants. Increasing the accumulation of Zn in rice grains is important for the world’s nutrition and health. In this study, we used a multiparent advanced generation intercross (MAGIC) population constructed using four parental lines and genotyped using a 55 K rice SNP array to identify QTLs related to Zn2+ concentrations in shoots at the seedling stage and grains at the mature stage. Five QTLs were detected as being associated with shoot Zn2+ concentration at the seedling stage, which explained 3.7–5.7% of the phenotypic variation. Six QTLs were detected as associated with grain Zn2+ concentration at the mature stage, which explained 5.5–8.9% of the phenotypic variation. Among the QTLs, qSZn2-1/qGZn2 and qSZn3/qGZn3 were identified as being associated with both the shoot and grain contents. Based on gene annotation and literature information, 16 candidate genes were chosen in the regions of qSZn1, qSZn2-1/qGZn2, qSZn3/qGZn3, qGZn7, and qGZn8. Analysis of candidate genes through qRT-PCR, complementation assay using the yeast Zn-uptake-deficient double-mutant ZHY3, and sequencing of the four parental lines suggested that LOC_Os02g06010 may play an important role in Zn2+ accumulation in indica rice.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 804
Author(s):  
Me-Sun Kim ◽  
Ju-Young Yang ◽  
Ju-Kyung Yu ◽  
Yi Lee ◽  
Yong-Jin Park ◽  
...  

The primary goals of rice breeding programs are grain quality and yield potential improvement. With the high demand for rice varieties of premium cooking and eating quality, we developed low-amylose content breeding lines crossed with Samgwang and Milkyqueen through the marker-assisted backcross (MABc) breeding program. Trait markers of the SSIIIa gene referring to low-amylose content were identified through an SNP mapping activity, and the markers were applied to select favorable lines for a foreground selection. To rapidly recover the genetic background of Samgwang (recurrent parent genome, RPG), 386 genome-wide markers were used to select BC1F1 and BC2F1 individuals. Seven BC2F1 lines with targeted traits were selected, and the genetic background recovery range varied within 97.4–99.1% of RPG. The amylose content of the selected BC2F2 grains ranged from 12.4–16.8%. We demonstrated the MABc using a trait and genome-wide markers, allowing us to efficiently select lines of a target trait and reduce the breeding cycle effectively. In addition, the BC2F2 lines confirmed by molecular markers in this study can be utilized as parental lines for subsequent breeding programs of high-quality rice for cooking and eating.


Author(s):  
Hari Kesh ◽  
Khushi Ram Battan ◽  
Rakesh Kumar

Background: Basmati rice is an important cereal crop occupying a unique position in Indian agriculture. More than 90% of global rice is produced and consumed in Asia and plays a crucial role in the entry of mineral nutrients into the food chain. Identification of stable genotypes is of great significance because the environmental conditions vary from season to season and year to year. Methods: Thirty six Basmati rice genotypes were evaluated in four production environments during kharif 2016 and kharif 2017 at two locations Kaul and Uchani to study the G × E interaction for milling, appearance, cooking and eating quality parameters. The genotypes were grown in randomized block design with three replications. Result: Based on the stability analysis of Eberhart and Russell model, genotypes viz., Haryana Mahak 1, Pusa 1826-12-271-4 and HKR 06-434 were found stable across the environments for milling%, grain length before cooking and length breadth ratio before cooking, respectively.


1985 ◽  
Vol 60 (3) ◽  
pp. 682-690 ◽  
Author(s):  
Z. J. Hawrysh ◽  
S. R. Gifford ◽  
M. A. Price

2019 ◽  
Vol 13 (2) ◽  
pp. 281-286 ◽  
Author(s):  
Bao-Lam Huynh ◽  
Jeffrey D. Ehlers ◽  
Timothy J. Close ◽  
Philip A. Roberts

Sign in / Sign up

Export Citation Format

Share Document