scholarly journals Antioxidant Metabolism, Photosystem II, and Fatty Acid Composition of Two Tall Fescue Genotypes With Different Heat Tolerance Under High Temperature Stress

2018 ◽  
Vol 9 ◽  
Author(s):  
Lianlian Hu ◽  
Aoyue Bi ◽  
Zhengrong Hu ◽  
Erick Amombo ◽  
Huiying Li ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1099
Author(s):  
Hongyin Qi ◽  
Dingfan Kang ◽  
Weihang Zeng ◽  
Muhammad Jawad Hassan ◽  
Yan Peng ◽  
...  

Persistent high temperature decreases the yield and quality of crops, including many important herbs. White clover (Trifolium repens) is a perennial herb with high feeding and medicinal value, but is sensitive to temperatures above 30 °C. The present study was conducted to elucidate the impact of changes in endogenous γ-aminobutyric acid (GABA) level by exogenous GABA pretreatment on heat tolerance of white clover, associated with alterations in endogenous hormones, antioxidant metabolism, and aquaporin-related gene expression in root and leaf of white clover plants under high-temperature stress. Our results reveal that improvement in endogenous GABA level in leaf and root by GABA pretreatment could significantly alleviate the damage to white clover during high-temperature stress, as demonstrated by enhancements in cell membrane stability, photosynthetic capacity, and osmotic adjustment ability, as well as lower oxidative damage and chlorophyll loss. The GABA significantly enhanced gene expression and enzyme activities involved in antioxidant defense, including superoxide dismutase, catalase, peroxidase, and key enzymes of the ascorbic acid–glutathione cycle, thus reducing the accumulation of reactive oxygen species and the oxidative injury to membrane lipids and proteins. The GABA also increased endogenous indole-3-acetic acid content in roots and leaves and cytokinin content in leaves, associated with growth maintenance and reduced leaf senescence under heat stress. The GABA significantly upregulated the expression of PIP1-1 and PIP2-7 in leaves and the TIP2-1 expression in leaves and roots under high temperature, and also alleviated the heat-induced inhibition of PIP1-1, PIP2-2, TIP2-2, and NIP1-2 expression in roots, which could help to improve the water transportation and homeostasis from roots to leaves. In addition, the GABA-induced aquaporins expression and decline in endogenous abscisic acid level could improve the heat dissipation capacity through maintaining higher stomatal opening and transpiration in white clovers under high-temperature stress.


Author(s):  
V. Jaldhani ◽  
D. Sanjeeva Rao ◽  
P. Beulah ◽  
B. Srikanth ◽  
P. R. Rao ◽  
...  

Aims: To assess heat-induced PSII damage and efficiency in eight promising backcross introgression lines (BC2F6) of KMR-3R/N22 possessing qHTSF1.1 and qHTSF4.1. Study Design:  Randomized Complete Block Design (RCBD) with three replications. Place and Duration of Study: ICAR-Indian Institute of Rice Research, Hyderabad India during wet/rainy (Kharif) season 2018. Methodology: Eight ILs (BC2F6) and parents were evaluated for heat tolerance. The high- temperature stress was imposed by enclosing the crop with a poly cover tent (Polyhouse) just before the anthesis stage. The fluorescence parameters viz., maximum efficiency of PSII photochemistry (Fv/Fm), Electron transport rate (ETR), effective PSII quantum yield (ΦPSII), coefficient of photochemical quenching (qP) and coefficient of non-photochemical quenching (qN) were measured under ambient and high-temperature stress. Results: The heat-tolerance potential of ILs was assessed in terms of PSII activity. The results indicated that significant differences were observed between treatments (T), genotypes (G) and the interaction between T × G.  The physiological basis of introgressed QTLs controls the spikelet fertility by maintaining the productive and adaptive strategies in heat-tolerant QTL introgressed lines with stable photosynthetic apparatus (PSII) under high-temperature stress. Conclusion: The Fv/Fm ratio denotes the maximum quantum yield of PSII. The heat-tolerant QTL introgressed lines exhibited stable photosynthetic apparatus (PSII) and noted better performance under high-temperature stress. They may be used as donors for fluorescence traits in breeding rice for high-temperature tolerance.


Author(s):  
Syed Bilal Hussain ◽  
Ali Bakhsh ◽  
Muhammad Zubair

A comparison was made of the physiological and morphological differences between Inqlab-91 (hexaploid) and Langdon (tetralpoid) wheat genotypes in response to high temperature stress applied at third leaf stage of growth. Electrolytes leakage technique was used to detect differences in the heat sensitivities of leaves of Inqlab-91 and Langdon. This method showed that at both 35 or 40°C Inqlab-91 was more heat tolerant than Langdon.


1988 ◽  
Vol 43 (5-6) ◽  
pp. 431-437 ◽  
Author(s):  
Josef A. Graf ◽  
Karin Witzan ◽  
Reto J. Strasser

Cerulenin-induced modifications in the fatty acid composition have been used to investigate the influence of acyl lipids on excitation energy distribution in thylakoid membranes of Petunia hybrida by means of 77 K fluorescence spectroscopy. Although cerulenin has no effect on relative contents of chlorophyll and acyl lipids, changes in the fatty acid composition of all thylakoid acyl lipids have been observed. The main cerulenin effect seems to be an increase in linoleic acid at the expense of saturated and monounsaturated C16- and C18-fatty acids resulting most likely in an increase in acyl lipid species containing both linoleic and linolenic acid. Low temperature (77 K ) fluorescence kinetics reveal a remarkable decrease in the ratio of the variable divided by the maximal fluorescence of photosystem II (F2(v)/F2(M)), taken as indicator for cerulenin-induced changes in this photosystem. Calculations of the excitation energy distribution terms based on a grouped bipartite model of photosynthesis suggest that a decrease in this ratio is caused by changes in energy transfer probabilities responsible for both, photochemical trapping of photosystem II and energetic cooperativity (grouping) between different photosystem II-light harvesting complex-units. Moreover, changes in the conformation responsible for spillover energy transfer are most likely to occur. Correlations between cerulenin-induced modifications of fatty acid composition and energy distribution support the assumption that excitation energy transfer depends on the structural state of the lipid matrix.


2020 ◽  
Vol 47 (5) ◽  
pp. 440 ◽  
Author(s):  
Syed Adeel Zafar ◽  
Amjad Hameed ◽  
Muhammad Ashraf ◽  
Abdus Salam Khan ◽  
Zia-ul- Qamar ◽  
...  

Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P < 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.


2012 ◽  
Vol 49 (1) ◽  
pp. 53-73 ◽  
Author(s):  
SMRUTI DAS ◽  
P. KRISHNAN ◽  
MONALISA NAYAK ◽  
B. RAMAKRISHNAN

SUMMARYHigh temperature stress at flowering can adversely affect rice yield, largely due to failure of fertilization. Oxidative damage can be a major reason inducing spikelet sterility in rice. In the present study, the effect of high temperatures on antioxidant metabolism in rice spikelets was characterised using nine different genotypes. Exposure to different temperatures at flowering stage revealed significant differences among various antioxidant enzymes in spikelets, both quantitatively and qualitatively. Spikelets of susceptible genotypes withstood temperature stress of up to 35 °C, those of moderately tolerant between 35 °C and 38 °C and those of tolerant genotypes up to 40 °C. Presence or absence, and changes in the isozyme intensities were consistent with alterations in their activities. Superoxide dismutase (SOD) isozymes II and III were present after exposure at 30 °C and 35 °C, while SOD I appeared above 40°C. Intensities of catalase isozymes I and III and the only isozyme of ascorbate peroxidase altered, while the only isozyme of guaical peroxidase and two (III and IV) of the four isozymes of catechol peroxidase disappeared after high temperature exposure of 45 °C. Thus, this work provides an evidence of the role of antioxidant metabolism in spikelets under high temperature stress conditions. Hence, changes in antioxidant isozymes in rice spikelets can be used as a biomarker for characterizing high temperature stress tolerance in rice spikelets.


Sign in / Sign up

Export Citation Format

Share Document