scholarly journals Genome Wide Association Study and Genomic Selection of Amino Acid Concentrations in Soybean Seeds

2019 ◽  
Vol 10 ◽  
Author(s):  
Jun Qin ◽  
Ainong Shi ◽  
Qijian Song ◽  
Song Li ◽  
Fengmin Wang ◽  
...  
2019 ◽  
Author(s):  
Waltram Ravelombola ◽  
Jun Qin ◽  
Ainong Shi ◽  
Fengmin Wang ◽  
Yan Feng ◽  
...  

Abstract Background Soybean [ Glycine max (L.) Merr.] is a legume of great interest worldwide. Enhancing genetic gain for agronomic traits via molecular approaches has been long considered as the main task for soybean breeders and geneticists. The objectives of this study were to evaluate maturity, plant height, seed weight, and yield in a diverse soybean accession panel, to conduct a genome-wide association study (GWAS) for these traits and identify SNP markers associated with the four traits, and to assess genomic selection (GS) accuracy. Results A total of 250 soybean accessions were evaluated for maturity, plant height, seed weight, and yield over three years. This panel was genotyped with a total of 10,259 high quality SNPs postulated from genotyping by sequencing (GBS). GWAS was performed using a Bayesian Information and Linkage Disequilibrium Iteratively Nested Keyway (BLINK) model, and GS was evaluated using a ridge regression best linear unbiased predictor (rrBLUP) model. The results revealed that a total of 20, 31, 37, 31, and 23 SNPs were significantly associated with the average 3-year data for maturity, plant height, seed weight, and yield, respectively; some significant SNPs were mapped into previously described loci ( E2 , E4 , and Dt1 ) affecting maturity and plant height in soybean and a new locus mapped on chromosome 20 was significantly associated with plant height; Glyma.10g228900 , Glyma.19g200800 , Glyma.09g196700 , and Glyma.09g038300 were candidate genes found in the vicinity of the top or the second best SNP for maturity, plant height, seed weight, and yield, respectively; a 11.5-Mb region of chromosome 10 was associated with both seed weight and yield; and GS accuracy was trait-, year-, and population structure-dependent. Conclusions The SNP markers identified from this study for plant height, maturity, seed weight and yield can be used to improve the four agronomic traits through marker-assisted selection (MAS) and GS in soybean breeding programs. After validation, the candidate genes can be transferred to new cultivars using SNP markers through MAS. The high GS accuracy has confirmed that the four agronomic traits can be selected in molecular breeding through GS.


2021 ◽  
Author(s):  
Taeko Shibaya ◽  
Chika Kuroda ◽  
Hisano Tsuruoka ◽  
Chiharu Minami ◽  
Akiko Obara ◽  
...  

Abstract Carrot is a major source of provitamin A in a human diet. Two of the most important traits for carrot breeding are carotenoid contents and root color. To examine genomic regions related to these traits and develop DNA markers for carrot breeding, we performed a genome-wide association study (GWAS) using genome-wide single-nucleotide polymorphisms (SNPs) in two F2 populations, both derived from crosses of orange root carrots bred by a Japanese seed company. The GWAS revealed 21 significant associations, and the physical position of some associations suggested two possible candidate genes. An Orange (Or) gene was a possible candidate for visual color evaluation and the α- and β-carotene contents. Sanger sequencing detected a new allele of Or with an SNP which caused a non-synonymous amino acid substitution. Genotypes of this SNP corresponded to the visual evaluation of root color in another breeding line. A chromoplast-specific lycopene β-cyclase (CYC-B) gene was a possible candidate for the β/α carotene ratio. On CYC-B, five amino acid substitutions were detected between parental plants of the F2 population. The detected associations and SNPs on the possible candidate genes will contribute to carrot breeding and the understanding of carotenoid biosynthesis and accumulation in orange carrots.


2021 ◽  
Vol 118 (11) ◽  
pp. e2004199118
Author(s):  
Marina Penova ◽  
Shuji Kawaguchi ◽  
Jun-ichirou Yasunaga ◽  
Takahisa Kawaguchi ◽  
Tomoo Sato ◽  
...  

HTLV-1–associated myelopathy (HAM/TSP) is a chronic and progressive inflammatory disease of the central nervous system. The aim of our study was to identify genetic determinants related to the onset of HAM/TSP in the Japanese population. We conducted a genome-wide association study comprising 753 HAM/TSP patients and 899 asymptomatic HTLV-1 carriers. We also performed comprehensive genotyping of HLA-A, -B, -C, -DPB1, -DQB1, and -DRB1 genes using next-generation sequencing technology for 651 HAM/TSP patients and 804 carriers. A strong association was observed in HLA class I (P = 1.54 × 10−9) and class II (P = 1.21 × 10−8) loci with HAM/TSP. Association analysis using HLA genotyping results showed that HLA-C*07:02 (P = 2.61 × 10−5), HLA-B*07:02 (P = 4.97 × 10−10), HLA-DRB1*01:01 (P = 1.15 × 10−9) and HLA-DQB1*05:01 (P = 2.30 × 10−9) were associated with disease risk, while HLA-B*40:06 (P = 3.03 × 10−5), HLA-DRB1*15:01 (P = 1.06 × 10−5) and HLA-DQB1*06:02 (P = 1.78 × 10−6) worked protectively. Logistic regression analysis identified amino acid position 7 in the G-BETA domain of HLA-DRB1 as strongly associated with HAM/TSP (P = 9.52 × 10−10); individuals homozygous for leucine had an associated increased risk of HAM/TSP (odds ratio, 9.57), and proline was protective (odds ratio, 0.65). Both associations were independent of the known risk associated with proviral load. DRB1-GB-7-Leu was not significantly associated with proviral load. We have identified DRB1-GB-7-Leu as a genetic risk factor for HAM/TSP development independent of proviral load. This suggests that the amino acid residue may serve as a specific marker to identify the risk of HAM/TSP even without knowledge of proviral load. In light of its allele frequency worldwide, this biomarker will likely prove useful in HTLV-1 endemic areas across the globe.


2019 ◽  
Vol 132 (6) ◽  
pp. 1639-1659 ◽  
Author(s):  
Sungwoo Lee ◽  
Kyujung Van ◽  
Mikyung Sung ◽  
Randall Nelson ◽  
Jonathan LaMantia ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0235089
Author(s):  
Waltram Second Ravelombola ◽  
Jun Qin ◽  
Ainong Shi ◽  
Liana Nice ◽  
Yong Bao ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255761
Author(s):  
Waltram Ravelombola ◽  
Jun Qin ◽  
Ainong Shi ◽  
Qijian Song ◽  
Jin Yuan ◽  
...  

Soybean [Glycine max (L.) Merr.] is a crop of great interest worldwide. Exploring molecular approaches to increase yield genetic gain has been one of the main challenges for soybean breeders and geneticists. Agronomic traits such as maturity, plant height, and seed weight have been found to contribute to yield. In this study, a total of 250 soybean accessions were genotyped with 10,259 high-quality SNPs postulated from genotyping by sequencing (GBS) and evaluated for grain yield, maturity, plant height, and seed weight over three years. A genome-wide association study (GWAS) was performed using a Bayesian Information and Linkage Disequilibrium Iteratively Nested Keyway (BLINK) model. Genomic selection (GS) was evaluated using a ridge regression best linear unbiased predictor (rrBLUP) model. The results revealed that 20, 31, 37, and 23 SNPs were significantly associated with maturity, plant height, seed weight, and yield, respectively; Many SNPs were mapped to previously described maturity and plant height loci (E2, E4, and Dt1) and a new plant height locus was mapped to chromosome 20. Candidate genes were found in the vicinity of the two SNPs with the highest significant levels associated with yield, maturity, plant height, seed weight, respectively. A 11.5-Mb region of chromosome 10 was associated with both yield and seed weight. Overall, the accuracy of GS was dependent on the trait, year, and population structure, and high accuracy indicates that these agronomic traits can be selected in molecular breeding through GS. The SNP markers identified in this study can be used to improve yield and agronomic traits through the marker-assisted selection and GS in breeding programs.


Sign in / Sign up

Export Citation Format

Share Document