scholarly journals Selenium-Ethylene Interplay in Postharvest Life of Cut Flowers

2020 ◽  
Vol 11 ◽  
Author(s):  
Lucas C. Costa ◽  
Luana M. Luz ◽  
Vitor L. Nascimento ◽  
Fernanda F. Araujo ◽  
Mirelle N. S. Santos ◽  
...  

Selenium (Se) is considered a beneficial element in higher plants when provided at low concentrations. Recently, studies have unveiled the interactions between Se and ethylene metabolism throughout plant growth and development. However, despite the evidence that Se may provide longer shelf life in ethylene-sensitive flowers, its primary action on ethylene biosynthesis and cause-effect responses are still understated. In the present review, we discuss the likely action of Se on ethylene biosynthesis and its consequence on postharvest physiology of cut flowers. By combining Se chemical properties with a dissection of ethylene metabolism, we further highlighted both the potential use of Se solutions and their downstream responses. We believe that this report will provide the foundation for the hypothesis that Se plays a key role in the postharvest longevity of ethylene-sensitive flowers.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 455A-455
Author(s):  
William J. Martin ◽  
Dennis P. Stimart

Cut flowers of Antirrhinum majus L. (snapdragon) P1, P2, F1, F3, and F2 × F2 plants were harvested after the first five flowers were open and were evaluated for postharvest longevity to further evaluate genes conditioning postharvest longevity. F3 progeny evaluated were derived by selfing F2 selections of long keeping, mid-range, and short keeping types. F2 × F2 progeny evaluated were derived from crosses within and between postharvest longevity categories. Populations for evaluation were grown in the greenhouse in winter 1998-1999 in a randomized complete-block design according to standard forcing procedures. Thirty plants of each genotype were held in the laboratory in deionized water under continuous fluorescent lighting at 22 °C for postharvest assessment. The end of postharvest life was defined as 50% of the flowers drying, browning, or wilting. Data will be presented on postharvest longevity and allelic relationships within populations.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 486d-486
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Considerable variation exists in Antirrhinum majus L. (snapdragon) for postharvest longevity of cut flowering stems. We have seen a range of 2 to 16 d postharvest life of snapdragon inbreds used in our experiments when evaluated in deionized water. A correlation between longevity of intact flowers and cut flowers has been reported for roses and tulips. In an effort to test this relationship on snapdragons, plants from a short-lived (5 days) and long-lived (16 days) inbred were grown in a greenhouse at the Univ. of Wisconsin, Madison, in Spring 1997. Plants began flowering in Apr.1997. The first three florets on each plant were tagged when fully open and the date of senescence recorded for each individual floret. Results showed a significant difference in longevity of intact florets. Mean floret longevity of the short- and long-lived lines was 13 and 25 days, respectively (LSD0.05 = 1.03 days). This is an indication that selection for postharvest longevity of snapdragons may be done based on intact flower longevity.


2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.


2020 ◽  
Vol 24 (21) ◽  
pp. 2475-2497
Author(s):  
Andrea Verónica Rodríguez-Mayor ◽  
German Jesid Peralta-Camacho ◽  
Karen Johanna Cárdenas-Martínez ◽  
Javier Eduardo García-Castañeda

Glycoproteins and glycopeptides are an interesting focus of research, because of their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate, carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in biological processes. It has been established that natural glycoconjugates could be an important source of templates for the design and development of molecules with therapeutic applications. However, isolating large quantities of glycoconjugates from biological sources with the required purity is extremely complex, because these molecules are found in heterogeneous environments and in very low concentrations. As an alternative to solving this problem, the chemical synthesis of glycoconjugates has been developed. In this context, several methods for the synthesis of glycopeptides in solution and/or solid-phase have been reported. In most of these methods, glycosylated amino acid derivatives are used as building blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding. This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1026 ◽  
Author(s):  
Laís G. Fregolente ◽  
João Vitor dos Santos ◽  
Giovanni Vinci ◽  
Alessandro Piccolo ◽  
Altair B. Moreira ◽  
...  

Hydrochar is a carbon-based material that can be used as soil amendment. Since the physical-chemical properties of hydrochar are mainly assigned to process parameters, we aimed at evaluating the organic fraction of different hydrochars through 13C-NMR and off-line TMAH-GC/MS. Four hydrochars produced with sugarcane bagasse, vinasse and sulfuric or phosphoric acids were analyzed to elucidate the main molecular features. Germination and initial growth of maize seedlings were assessed using hydrochar water-soluble fraction to evaluate their potential use as growth promoters. The hydrochars prepared with phosphoric acid showed larger amounts of bioavailable lignin-derived structures. Although no differences were shown about the percentage of maize seeds germination, the hydrochar produced with phosphoric acid promoted a better seedling growth. For this sample, the greatest relative percentage of benzene derivatives and phenolic compounds were associated to hormone-like effects, responsible for stimulating shoot and root elongation. The reactions parameters proved to be determinant for the organic composition of hydrochar, exerting a strict influence on molecular features and plant growth response.


Author(s):  
Elaine Cristina Lengowski ◽  
Graciela Inês Bolzon de Muñiz ◽  
Umberto Klock ◽  
Silvana Nisgoski

2013 ◽  
Vol 1 (1) ◽  
pp. 35-38 ◽  
Author(s):  
Sartaj Wani ◽  
Subhash Chand ◽  
Tahir Ali

Research on Azotobacter chroococcum spp. in crop production has manifested its significance in plant nutrition and its contribution to soil fertility. The possibility of using Azotobacter chroococcum in research experiments as microbial inoculant through production of growth substances and their effects on the plant has markedly enhanced crop production in agriculture. Being soil bacteria, Azotobacteria genus synthesizes auxins, cytokinins, and GA–like substances, and these growth materials are the primary substances controlling the enhanced growth. These hormonal substances, which originate from the rhizosphere or root surface, affect the growth of the closely associated higher plants. In order to guarantee the high effectiveness of inoculants and microbiological fertilizers it is necessary to find the compatible partners, i.e. a particular plant genotype and a particular Azotobacter strain that will form a good association.


Sign in / Sign up

Export Citation Format

Share Document